Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Frustrated Magnetism, Quantum spin liquids and gauge theories
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Topological Insulators and Beyond
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Breaking electrons apart in condensed matter physics T. Senthil (MIT) Group at MIT Predrag Nikolic Dinesh Raut O. Motrunich (now at KITP) A. Vishwanath.
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million metres of superconducting wire from US firm American Superconductor.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Exotic Phases in Quantum Magnets MPA Fisher Outline: 2d Spin liquids: 2 Classes Topological Spin liquids Critical Spin liquids Doped Mott insulators: Conducting.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Quantum criticality of Fermi surfaces in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum exotic states in correlated topological insulators Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Higgs Bosons in Condensed Matter Muir Morrison Ph 199 5/23/14.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
1 The 5/2 Edge IPAM meeting on Topological Quantum Computing February 26- March 2, 2007 MPA Fisher, with Paul Fendley and Chetan Nayak Motivation: FQHE:
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum criticality: where are we and where are we going ?
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Quantum phases and critical points of correlated metals
Science 303, 1490 (2004); cond-mat/ cond-mat/
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Deconfined quantum criticality
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo, May 29, 2010

HARVARD Max Metlitski, Harvard arXiv: Cenke Xu, Harvard arXiv: Eun Gook Moon, Harvard arXiv:

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

Ground state has long-range Néel order Square lattice antiferromagnet

Add perturbations so ground state no longer has long-range Néel order Square lattice antiferromagnet

Add perturbations so ground state no longer has long-range Néel order Square lattice antiferromagnet

Underlying electrons cannot be ignored even though charged excitations are fully gapped. Order parameter description is incomplete They endow topological defects in the order parameter (hedgehogs, vortices...) with Berry phases: the defects acquire additional degeneracies and transform non-trivially under lattice space group e.g. with non-zero crystal momentum

Metals (in the cuprates) Hole states occupied Electron states occupied

Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

Spin density wave theory

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Half-filled band

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Half-filled band

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hot spots Half-filled band

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots Half-filled band

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Insulator with Neel order has electrons filling a band, and no Fermi surface Hot spots Insulator Half-filled band

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Insulator with Neel order has electrons filling a band, and no Fermi surface Hot spots Insulator Half-filled band

Square lattice antiferromagnet

Nature of quantum “disordered” phase

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) Nature of quantum “disordered” phase

Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009)

Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009) Quantum “disordering” spiral order leads to a Z 2 spin liquid

Phase diagram of frustrated antiferromagnets N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009)

Phase diagram of frustrated antiferromagnets M N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991) C. Xu and S. Sachdev, Phys. Rev. B 79, (2009) Multicritical point M described by a doubled Chern-Simons theory; non-supersymmetric analog of the ABJM model

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Collinear magnetic order (Neel) N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Valence Bond Solids N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Spiral magnetic order N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S Z 2 spin liquids N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

Phase diagram of J 1 -J 2 -J 3 antiferromagnet on the square lattice ~1/S M M N. Read and S. Sachdev Phys. Rev. Lett. 63, 1773 (1991)

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

Quantum “disordering” magnetic order

S. Sachdev, M. A. Metlitski, Y. Qi, and S. Sachdev Phys. Rev. B 80, (2009)

Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

Projected fermion wavefunctions neutral fermionic spinons (Fisher, Wen, Lee, Kim)

Projected fermion wavefunctions (Fisher, Wen, Lee, Kim) charged slave boson/rotor

Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

Projected fermion wavefunctions (Fisher, Wen, Lee, Kim)

Unified spin liquid theory

By breaking SO(4) gauge with different Higgs fields, we can reproduce essentially all earlier theories of spin liquids. We also find many new spin liquid phases, some with Majorana fermion excitations which carry neither spin nor charge

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

1. Quantum “disordering” magnetic order in two-dimensional antiferromagnets Topological defects and their Berry phases 2. Unified theory of spin liquids Majorana liquids 3. Loss of magnetic order in a metal d-wave pairing and (modulated) Ising-nematic order Outline

Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

“Hot spot” “Cold” Fermi surfaces

Hertz theory

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, (2004). Hertz theory

d -wave Cooper pairing instability in particle-particle channel

Emergent Pseudospin symmetry

d -wave Cooper pairing instability in particle-particle channel

Bond density wave (with local Ising-nematic order) instability in particle-hole channel

77

78 “Bond density” measures amplitude for electrons to be in spin-singlet valence bond: VBS order

79 “Bond density” measures amplitude for electrons to be in spin-singlet valence bond: VBS order

BA C D

BA C D Strong anisotropy of electronic states between x and y directions: Electronic “Ising-nematic” order

Conclusions Theory for the onset of spin density wave in metals is strongly coupled in two dimensions For the cuprate Fermi surface, there are strong instabilities near the quantum critical point to d-wave pairing and bond density waves with local Ising-nematic ordering

Conclusions Quantum “disordering” magnetic order leads to valence bond solids and Z 2 spin liquids Unified theory of spin liquids using Majorana fermions: also includes states obtained by projecting free fermion determinants