Dept. of Computer Science Rutgers Node Similarity, Graph Similarity and Matching: Theory and Applications Danai Koutra (CMU) Tina Eliassi-Rad (Rutgers)

Slides:



Advertisements
Similar presentations
Weiren Yu 1, Jiajin Le 2, Xuemin Lin 1, Wenjie Zhang 1 On the Efficiency of Estimating Penetrating Rank on Large Graphs 1 University of New South Wales.
Advertisements

BiG-Align: Fast Bipartite Graph Alignment
CMU SCS I2.2 Large Scale Information Network Processing INARC 1 Overview Goal: scalable algorithms to find patterns and anomalies on graphs 1. Mining Large.
School of Computer Science Carnegie Mellon University Duke University DeltaCon: A Principled Massive- Graph Similarity Function Danai Koutra Joshua T.
School of Computer Science Carnegie Mellon University National Taiwan University of Science & Technology Unifying Guilt-by-Association Approaches: Theorems.
Multi-label Relational Neighbor Classification using Social Context Features Xi Wang and Gita Sukthankar Department of EECS University of Central Florida.
Dept. of Computer Science Rutgers Node and Graph Similarity : Theory and Applications Danai Koutra (CMU) Tina Eliassi-Rad (Rutgers) Christos Faloutsos.
Endend endend Carnegie Mellon University Korea Advanced Institute of Science and Technology VoG: Summarizing and Understanding Large Graphs Danai Koutra.
DATA MINING LECTURE 12 Link Analysis Ranking Random walks.
Web Search – Summer Term 2006 VI. Web Search - Ranking (cont.) (c) Wolfgang Hürst, Albert-Ludwigs-University.
ON LINK-BASED SIMILARITY JOIN A joint work with: Liwen Sun, Xiang Li, David Cheung (University of Hong Kong) Jiawei Han (University of Illinois Urbana.
Fast Query Execution for Retrieval Models based on Path Constrained Random Walks Ni Lao, William W. Cohen Carnegie Mellon University
N EIGHBORHOOD F ORMATION AND A NOMALY D ETECTION IN B IPARTITE G RAPHS Jimeng Sun, Huiming Qu, Deepayan Chakrabarti & Christos Faloutsos Jimeng Sun, Huiming.
Fast Direction-Aware Proximity for Graph Mining KDD 2007, San Jose Hanghang Tong, Yehuda Koren, Christos Faloutsos.
Graph Based Semi- Supervised Learning Fei Wang Department of Statistical Science Cornell University.
Using Structure Indices for Efficient Approximation of Network Properties Matthew J. Rattigan, Marc Maier, and David Jensen University of Massachusetts.
Neighborhood Formation and Anomaly Detection in Bipartite Graphs Jimeng Sun Huiming Qu Deepayan Chakrabarti Christos Faloutsos Speaker: Jimeng Sun.
1 Collaborative Filtering and Pagerank in a Network Qiang Yang HKUST Thanks: Sonny Chee.
SCS CMU Proximity Tracking on Time- Evolving Bipartite Graphs Speaker: Hanghang Tong Joint Work with Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos.
Measuring and Extracting Proximity in Networks By - Yehuda Koren, Stephen C.North and Chris Volinsky - Rahul Sehgal.
1 Extending Link-based Algorithms for Similar Web Pages with Neighborhood Structure Allen, Zhenjiang LIN CSE, CUHK 13 Dec 2006.
1 Fast Dynamic Reranking in Large Graphs Purnamrita Sarkar Andrew Moore.
Measure Proximity on Graphs with Side Information Joint Work by Hanghang Tong, Huiming Qu, Hani Jamjoom Speaker: Mary McGlohon 1 ICDM 2008, Pisa, Italy15-19.
The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.
Fast Random Walk with Restart and Its Applications
SCS CMU Joint Work by Hanghang Tong, Yasushi Sakurai, Tina Eliassi-Rad, Christos Faloutsos Speaker: Hanghang Tong Oct , 2008, Napa, CA CIKM 2008.
CMU SCS KDD'09Faloutsos, Miller, Tsourakakis P3-1 Large Graph Mining: Power Tools and a Practitioner’s guide Task 3: Recommendations & proximity Faloutsos,
Overview of Web Data Mining and Applications Part I
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Graph Algorithms Ch. 5 Lin and Dyer. Graphs Are everywhere Manifest in the flow of s Connections on social network Bus or flight routes Social graphs:
CMU SCS Big (graph) data analytics Christos Faloutsos CMU.
School of Electronics Engineering and Computer Science Peking University Beijing, P.R. China Ziqi Wang, Yuwei Tan, Ming Zhang.
School of Computer Science Carnegie Mellon University National Taiwan University of Science & Technology Unifying Guilt-by-Association Approaches: Theorems.
MapReduce and Graph Data Chapter 5 Based on slides from Jimmy Lin’s lecture slides ( (licensed.
DATA MINING LECTURE 13 Absorbing Random walks Coverage.
2015/10/111 DBconnect: Mining Research Community on DBLP Data Osmar R. Zaïane, Jiyang Chen, Randy Goebel Web Mining and Social Network Analysis Workshop.
The PageRank Citation Ranking: Bringing Order to the Web Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd Presented by Anca Leuca, Antonis Makropoulos.
KDD 2007, San Jose Fast Direction-Aware Proximity for Graph Mining Speaker: Hanghang Tong Joint work w/ Yehuda Koren, Christos Faloutsos.
SCS CMU Proximity on Large Graphs Speaker: Hanghang Tong Guest Lecture.
Fast Random Walk with Restart and Its Applications Hanghang Tong, Christos Faloutsos and Jia-Yu (Tim) Pan ICDM 2006 Dec , HongKong.
Lecture #10 PageRank CS492 Special Topics in Computer Science: Distributed Algorithms and Systems.
Information Network Analysis and Discovery Cuiping Li Guoming He Information School, Renmin University of China.
CMU SCS KDD '09Faloutsos, Miller, Tsourakakis P5-1 Large Graph Mining: Power Tools and a Practitioner’s guide Task 5: Graphs over time & tensors Faloutsos,
Hanghang Tong, Brian Gallagher, Christos Faloutsos, Tina Eliassi-Rad
Link Prediction Topics in Data Mining Fall 2015 Bruno Ribeiro
Dept. of Computer Science Rutgers Node Similarity, Graph Similarity and Matching: Theory and Applications Danai Koutra (CMU) Tina Eliassi-Rad (Rutgers)
KDD 2007, San Jose Fast Direction-Aware Proximity for Graph Mining Speaker: Hanghang Tong Joint work w/ Yehuda Koren, Christos Faloutsos.
1 1 COMP5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified based on the slides provided by Lawrence Page, Sergey Brin, Rajeev Motwani.
Talk 2: Graph Mining Tools - SVD, ranking, proximity Christos Faloutsos CMU.
1 Authors: Glen Jeh, Jennifer Widom (Stanford University) KDD, 2002 Presented by: Yuchen Bian SimRank: a measure of structural-context similarity.
Single-Pass Belief Propagation
Kijung Shin Jinhong Jung Lee Sael U Kang
KAIST TS & IS Lab. CS710 Know your Neighbors: Web Spam Detection using the Web Topology SIGIR 2007, Carlos Castillo et al., Yahoo! 이 승 민.
CSCE 5073 Section 001: Data Mining Spring Overview Class hour 12:30 – 1:45pm, Tuesday & Thur, JBHT 239 Office hour 2:00 – 4:00pm, Tuesday & Thur,
Center-Piece Subgraphs: Problem definition and Fast Solutions Hanghang Tong Christos Faloutsos Carnegie Mellon University.
CS 540 Database Management Systems Web Data Management some slides are due to Kevin Chang 1.
1 CS 430 / INFO 430: Information Retrieval Lecture 20 Web Search 2.
Term Project Proposal By J. H. Wang Apr. 7, 2017.
Large Graph Mining: Power Tools and a Practitioner’s guide
PEGASUS: A PETA-SCALE GRAPH MINING SYSTEM
Link-Based Ranking Seminar Social Media Mining University UC3M
Hanghang Tong, Brian Gallagher, Christos Faloutsos, Tina Eliassi-Rad
Large Graph Mining: Power Tools and a Practitioner’s guide
Speaker: Hanghang Tong Carnegie Mellon University
Graph and Tensor Mining for fun and profit
Asymmetric Transitivity Preserving Graph Embedding
Learning to Rank Typed Graph Walks: Local and Global Approaches
CSCE 4143 Section 001: Data Mining Spring 2019.
Proximity in Graphs by Using Random Walks
Presentation transcript:

Dept. of Computer Science Rutgers Node Similarity, Graph Similarity and Matching: Theory and Applications Danai Koutra (CMU) Tina Eliassi-Rad (Rutgers) Christos Faloutsos (CMU) SDM 2014, Friday April 25 th 2014, Philadelphia, PA

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Who we are Danai Koutra, CMU –Node and graph similarity, summarization, pattern mining – Tina Eliassi-Rad, Rutgers –Data mining, machine learning, big complex networks analysis – Christos Faloutsos, CMU –Graph and stream mining, … – 2

Dept. of Computer Science Rutgers Part 1b Similarity between Nodes: Proximity 3

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Effective Conductance –Guilt-by-association techniques –Applications –Summary 4

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Node Proximity It measures: –Info exchange [Minkov+ ’06] –Latency/speed of info exchange [Bunke] –Likelihood of future links [Liben-Nowell+ ‘03], [Tong+] –Propagation of a product/idea/disease [Prakash+] –Relevance: ranking [Haveliwala], [Chakrabarti+] 5

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Node Proximity Proximity, similarity, closeness Distance 6

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Node Proximity Intuitively, a good node-proximity measure, should reward –Many –Short –Heavy paths, and –be monotonic 7

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Effective Conductance –Guilt-by-association techniques –Applications –Summary 8

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Graph-theoretic Approaches Idea: Simple Metrics: –Number of hops –Sum of weights of hops 9 (s 1,t 1 ) more similar than (s 4,t 4 ) [Koren+ ’07]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Graph-theoretic Approaches But they do not always capture meaningful relationships 10 (s,t) in 2 more similar than in 1 and 3: Linked via more paths! (s,t) linked via high-deg node: probably unrelated [Koren+ ’07] s t t t s s s t

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Max-flow Approach Idea: heavy weighted links and number of paths matter, BUT path length doesn’t. 11 Same maximal flow [Koren+ ’07]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos SimRank Idea: two objects are similar if they are connected to similar objects –Iterative formula sim(a,b) ∞ Σ sim(in-neighbors[a],in-neighbors[b]) –O(n 3 ) runtime 12 [Jeh+ ’02]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos SimRank Idea: two objects are similar if they are connected to similar objects –Iterative formula sim(a,b) ∞ Σ sim(in-neighbors[a],in-neighbors[b]) –O(n 3 ) runtime Many works improve the runtime! 13 [Fogaras ’05, Antonellis+ ’08, Lizorkin+ ’08, Yu+ ‘10…]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Effective Conductance –Guilt-by-association techniques –Applications –Summary 14

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Effective Conductance Edges: resistors Weights: conductance 15 [Doyle & Snell ‘84] (s,t)-proximity = current from s to t s t Vs = 1

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Effective Conductance Edges: resistors Weights: conductance Advantages: –Favors short paths (graph-theoretic) –and more paths (max-flow) –BUT not affected by a single bottleneck! 16 (s,t)-proximity = current from s to t [Doyle & Snell ‘84] s t Vs = 1

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Effective Conductance ~ Random Walks EC(s,t) = Effective Conductance(s,t) = = deg(s) * P(s -> t) = = deg(t) * P(t -> s) = = Expected number of successful escapes from s -> t for deg(s) attempts 17 [Doyle & Snell ‘84] s t Vs = 1

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Effective Conductance ~ Random Walks Property: Monotonicity 18 [Doyle & Snell ‘84] EC 1 (s,t) < EC 2 (s,t) EC 1 (s,t) < EC 3 (s,t) s t t t s s s t

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Sink-augmented Effective Conductance 19 [Faloutsos+ ‘04] -solves the problem of degree-1 nodes -BUT, non-monotonic (small subgraphs have greater conductance) s t sink

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Cycle-free Effective Conductance improves on Effective Conductance EC cf = deg(s) * P(s -> t without revisiting any node) 20 [Koren+ ’07]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Cycle-free Effective Conductance improves on Effective Conductance EC cf = deg(s) * P(s -> t without revisiting any node) -Relies on all paths (not just shortest, or max-cut) -solves the problem of degree-1 nodes -monotonic -asymmetry EC cf (s,t) ≠ EC cf (t,s) 21 [Koren+ ’07]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Effective Conductance –Guilt-by-association techniques –Applications –Summary 22

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Guilt-by-Association Techniques 23 Given: graph and few labeled nodes Find: class (red/green) for rest nodes Assuming: network effect (homophily/ heterophily) red green F raudster H onest A ccomplice

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Guilt-by-Association Techniques Belief Propagation (BP) Bayesian Semi-supervised Learning (SSL) Random Walk with Restarts (RWR) Google 24

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Belief Propagation Iterative message-based method st round 2 nd round... until stop criterion fulfilled “Propagation matrix”:  Homophily  Heterophily PL AI class of sender class of receiver Usually same diagonal = homophily factor h [Pearl ‘82][Yedidia+ ’02] … [Gonzalez+ ‘09][Chechetka+ ‘10]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos 26 Belief Propagation Equations i j … … message(i −> j) ≈ belief(i)  homophily strength

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos 27 Belief Propagation Equations i j … belief of i prior belief messages from neighbors

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Guilt-by-Association Techniques Belief Propagation (BP) Bayesian Semi-supervised Learning (SSL) Random Walk with Restarts (RWR) Google 28

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Semi-Supervised Learning (SSL) graph-based few labeled nodes edges: similarity between nodes Inference: exploit neighborhood information 29 STEP1STEP1 STEP1STEP1 STEP2STEP2 STEP2STEP ? ? [Zhou ‘06][Ji, Han ’10]…

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos SSL Equation 30 homophily strength of neighbors ~”stiffness of spring” final labels known labels 1 ? ? d1 d2 d3 d1 d2 d graph structure ? ?

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Guilt-by-Association Techniques Belief Propagation (BP) Bayesian Semi-supervised Learning (SSL) Random Walk with Restarts (RWR) Google 31

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Personalized Random Walk with Restarts (RWR) 32 [Brin+ ’98][Haveliwala ’03][Tong+ ‘06][Minkov, Cohen ‘07]… measure relevance

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos RWR 33 relevance vector restart prob starting vector 0 ½ ½ ½ 0 ½ ½ ½ ½ 0 ½ ? ? graph structure

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Correspondence of Methods Random Walk with Restarts (RWR) ≈ Semi-supervised Learning (SSL) ≈ Belief Propagation (BP) 34 MethodMatrixunknownknown RWR[I – c AD -1 ]×x=(1-c)y SSL [I + a (D - A)] ×x=y FABP [I + a D - c ’ A] ×bhbh =φhφh ? ? [Koutra+ ’11: Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms]

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Guilt-by-association techniques –Applications –Summary 35

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Foils on apps: by Prof. Hanghang TONG 36

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Ranking-related Tasks - autoCaptioning 37

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos gCaP: Automatic Image Caption Q … SeaSunSkyWave {} {} CatForestGrassTiger {?, ?, ?,} ? A: Proximity! [Pan+ KDD2004] 38

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Test Image SeaSunSkyWaveCatForestTigerGrass Image Keyword Region 39

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Test Image SeaSunSkyWaveCatForestTigerGrass Image Keyword Region {Grass, Forest, Cat, Tiger} 40 CIKM, 2008

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos User-specific patterns 41 Prof Hanghang TONG

SDM’14 TutorialD. Koutra & T. Eliassi-Rad & C. Faloutsos Center-Piece Subgraph(CePS) Original Graph CePS Q: How to find hub for the black nodes? A: Proximity! [Tong+ KDD 2006] CePS guy Input Output Red: Max (Prox(A, Red) x Prox(B, Red) x Prox(C, Red)) 42

SDM’14 TutorialD. Koutra & T. Eliassi-Rad & C. Faloutsos CePS: Example 3-43

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos More applications 44

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Cyber Security 45 victims? [ Kephart+ ’95 ] [Kolter+ ’06 ][Song+ ’08-’11][Chau+ ‘11]… botnet members? bot ? ?

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Fraud Detection 46 Lax controls? [Neville+ ‘05][Chau+ ’07][McGlohon+ ’09]… fraudsters? fraudster ? ?

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Even More Applications Clustering –Proximity as input [Ding+ KDD 2007] management [Minkov+ CEAS 06]. Business Process Management [Qu+ 2008] ProSIN –Listen to clients’ comments [Tong+ 2008] TANGENT –Broaden Users’ Horizon [Oonuma & Tong ] Ghost Edge –Within Network Classification [Gallagher & Tong+ KDD08 b] … 3-47

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Roadmap Node Roles Node Proximity –Graph-theoretic Approaches –Effective Conductance –Guilt-by-association techniques –Applications –Summary 48

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Summary Node Roles and Proximity are complementary Node Proximity: –Building block for many applications! –Many ways to define similarities. –All the guilt-by-association techniques and effective conductance are similar. 49

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos Papers at

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos What we will cover next 51

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos References Yehuda Koren, Stephen C. North, and Chris Volinsky Measuring and extracting proximity graphs in networks. ACM TKDD 1, 3, Article 12 (Dec. 2007). Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos Faloutsos Unifying guilt-by-association approaches: theorems and fast algorithms. ECML PKDD'11 Sergey Brin and Lawrence Page The anatomy of a large-scale hypertextual Web search engine. In World Wide Web 7 (WWW7). Jonathan S. Yedidia, William T. Freeman, and Yair Weiss Understanding belief propagation and its generalizations. In Exploring artificial intelligence in the new millennium, Gerhard Lakemeyer and Bernhard Nebel (Eds.). Glen Jeh and Jennifer Widom SimRank: a measure of structural- context similarity. ACM SIGKDD Ioannis Antonellis, Hector Garcia Molina, and Chi Chao Chang Simrank++: query rewriting through link analysis of the click graph. Proc. VLDB Endow. 1, 1 (August 2008),

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos References Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, The Mathematical Association of America, C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection subgraphs. In Proc. 10th ACM SIGKDD conference, pages 118–127, T.H. Haveliwala (2002) Topic-Sensitive Pagerank. In WWW, , J.Y. Pan, H.J. Yang, C. Faloutsos & P. Duygulu. (2004) Automatic multimedia cross-modal correlation discovery. In KDD, , J. Sun, H. Qu, D. Chakrabarti & C. Faloutsos. (2005) Neighborhood Formation and Anomaly Detection in Bipartite Graphs. In ICDM, , W. Cohen. (2007) Graph Walks and Graphical Models. Draft. A. Agarwal, S. Chakrabarti & S. Aggarwal. (2006) Learning to rank networked entities. In KDD, 14-23, S. Chakrabarti. (2007) Dynamic personalized pagerank in entity-relation graphs. In WWW, , F. Fouss, A. Pirotte, J.-M. Renders, & M. Saerens. (2007) Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation. IEEE Trans. Knowl. Data Eng. 19(3),

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos References H. Tong & C. Faloutsos. (2006) Center-piece subgraphs: problem definition and fast solutions. In KDD, , H. Tong, C. Faloutsos, & J.Y. Pan. (2006) Fast Random Walk with Restart and Its Applications. In ICDM, , H. Tong, Y. Koren, & C. Faloutsos. (2007) Fast direction-aware proximity for graph mining. In KDD, , H. Tong, B. Gallagher, C. Faloutsos, & T. Eliassi-Rad. (2007) Fast best-effort pattern matching in large attributed graphs. In KDD, , H. Tong, S. Papadimitriou, P.S. Yu & C. Faloutsos. (2008) Proximity Tracking on Time-Evolving Bipartite Graphs. to appear in SDM B. Gallagher, H. Tong, T. Eliassi-Rad, C. Faloutsos. Using Ghost Edges for Classification in Sparsely Labeled Networks. KDD 2008 H. Tong, Y. Sakurai, T. Eliassi-Rad, and C. Faloutsos. Fast Mining of Complex Time-Stamped Events CIKM 08 H. Tong, H. Qu, and H. Jamjoom. Measuring Proximity on Graphs with Side Information. Submitted. Einat Minkov, William W. Cohen, and Andrew Y. Ng Contextual search and name disambiguation in using graphs. ACM SIGIR '06. 54

SDM’14 Tutorial D. Koutra & T. Eliassi-Rad & C. Faloutsos References David Liben-Nowell and Jon Kleinberg The link prediction problem for social networks. CIKM '03. Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla New perspectives and methods in link prediction. KDD '10. Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov Accuracy estimate and optimization techniques for SimRank computation. Weiren Yu; Xuemin Lin; Jiajin Le, "A Space and Time Efficient Algorithm for SimRank Computation”, th International Asia-Pacific Web Conference (APWEB), pp Dániel Fogaras and Balázs Rácz Scaling link-based similarity search. WWW '05. Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van Dooren A Measure of Similarity between Graph Vertices: Applications to Synonym Extraction and Web Searching. SIAM Rev. 46, 4 (April 2004),