Contingency Tables (cross tabs)  Generally used when variables are nominal and/or ordinal Even here, should have a limited number of variable attributes.

Slides:



Advertisements
Similar presentations
CHI-SQUARE(X2) DISTRIBUTION
Advertisements

Basic Statistics The Chi Square Test of Independence.
The Chi-Square Test for Association
Bivariate Analysis Cross-tabulation and chi-square.
Hypothesis Testing IV Chi Square.
Chapter 13: The Chi-Square Test
Chapter 11 Contingency Table Analysis. Nonparametric Systems Another method of examining the relationship between independent (X) and dependant (Y) variables.
PSY 340 Statistics for the Social Sciences Chi-Squared Test of Independence Statistics for the Social Sciences Psychology 340 Spring 2010.
CJ 526 Statistical Analysis in Criminal Justice
PPA 415 – Research Methods in Public Administration Lecture 9 – Bivariate Association.
Chi-square Test of Independence
Inferential Statistics  Hypothesis testing (relationship between 2 or more variables)  We want to make inferences from a sample to a population.  A.
Crosstabs and Chi Squares Computer Applications in Psychology.
PPA 501 – Analytical Methods in Administration Lecture 9 – Bivariate Association.
Crosstabs. When to Use Crosstabs as a Bivariate Data Analysis Technique For examining the relationship of two CATEGORIC variables  For example, do men.
Chi-Square Tests and the F-Distribution
+ Quantitative Statistics: Chi-Square ScWk 242 – Session 7 Slides.
Chapter 11(1e), Ch. 10 (2/3e) Hypothesis Testing Using the Chi Square ( χ 2 ) Distribution.
Hypothesis Testing IV (Chi Square)
Cross Tabulation and Chi-Square Testing. Cross-Tabulation While a frequency distribution describes one variable at a time, a cross-tabulation describes.
1 Psych 5500/6500 Chi-Square (Part Two) Test for Association Fall, 2008.
The schedule moving forward… Today – Evaluation Research – Remaining time = start on quantitative data analysis Thursday – Methodology section due – Quantitative.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 11-1 Chapter 11 Chi-Square Tests Business Statistics, A First Course 4 th Edition.
CJ 526 Statistical Analysis in Criminal Justice
Week 10 Chapter 10 - Hypothesis Testing III : The Analysis of Variance
Chi-Square Test of Independence Practice Problem – 1
Tests of Significance June 11, 2008 Ivan Katchanovski, Ph.D. POL 242Y-Y.
Chi-square (χ 2 ) Fenster Chi-Square Chi-Square χ 2 Chi-Square χ 2 Tests of Statistical Significance for Nominal Level Data (Note: can also be used for.
Chapter 9: Non-parametric Tests n Parametric vs Non-parametric n Chi-Square –1 way –2 way.
Copyright © 2012 by Nelson Education Limited. Chapter 10 Hypothesis Testing IV: Chi Square 10-1.
1 Chi-Square Heibatollah Baghi, and Mastee Badii.
Chapter 11 Hypothesis Testing IV (Chi Square). Chapter Outline  Introduction  Bivariate Tables  The Logic of Chi Square  The Computation of Chi Square.
Chi-Square X 2. Parking lot exercise Graph the distribution of car values for each parking lot Fill in the frequency and percentage tables.
Nonparametric Tests: Chi Square   Lesson 16. Parametric vs. Nonparametric Tests n Parametric hypothesis test about population parameter (  or  2.
Chi-square Test of Independence
Chapter 11, 12, 13, 14 and 16 Association at Nominal and Ordinal Level The Procedure in Steps.
Section 10.2 Independence. Section 10.2 Objectives Use a chi-square distribution to test whether two variables are independent Use a contingency table.
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
Reasoning in Psychology Using Statistics Psychology
Chapter 11: Chi-Square  Chi-Square as a Statistical Test  Statistical Independence  Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
12/23/2015Slide 1 The chi-square test of independence is one of the most frequently used hypothesis tests in the social sciences because it can be used.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Week 13a Making Inferences, Part III t and chi-square tests.
Leftover Slides from Week Five. Steps in Hypothesis Testing Specify the research hypothesis and corresponding null hypothesis Compute the value of a test.
Chapter 15 The Chi-Square Statistic: Tests for Goodness of Fit and Independence PowerPoint Lecture Slides Essentials of Statistics for the Behavioral.
Chi-Square Analyses.
1 Chi-square Test Dr. T. T. Kachwala. Using the Chi-Square Test 2 The following are the two Applications: 1. Chi square as a test of Independence 2.Chi.
Outline of Today’s Discussion 1.The Chi-Square Test of Independence 2.The Chi-Square Test of Goodness of Fit.
Chapter 14 – 1 Chi-Square Chi-Square as a Statistical Test Statistical Independence Hypothesis Testing with Chi-Square The Assumptions Stating the Research.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
ANOVA Knowledge Assessment 1. In what situation should you use ANOVA (the F stat) instead of doing a t test? 2. What information does the F statistic give.
1 Hypothesis testing & Chi-square COMM Nan Yu Fall 2007.
Section 10.2 Objectives Use a contingency table to find expected frequencies Use a chi-square distribution to test whether two variables are independent.
CHI SQUARE DISTRIBUTION. The Chi-Square (  2 ) Distribution The chi-square distribution is the probability distribution of the sum of several independent,
POLS 7000X STATISTICS IN POLITICAL SCIENCE CLASS 9 BROOKLYN COLLEGE-CUNY SHANG E. HA Leon-Guerrero and Frankfort-Nachmias, Essentials of Statistics for.
Basic Statistics The Chi Square Test of Independence.
Chapter 9: Non-parametric Tests
10 Chapter Chi-Square Tests and the F-Distribution Chapter 10
Hypothesis Testing Review
Qualitative data – tests of association
Hypothesis Testing Using the Chi Square (χ2) Distribution
Different Scales, Different Measures of Association
Reasoning in Psychology Using Statistics
Chapter 10 Analyzing the Association Between Categorical Variables
Contingency Tables (cross tabs)
Reasoning in Psychology Using Statistics
Parametric versus Nonparametric (Chi-square)
Reasoning in Psychology Using Statistics
Hypothesis Testing - Chi Square
Contingency Tables (cross tabs)
Presentation transcript:

Contingency Tables (cross tabs)  Generally used when variables are nominal and/or ordinal Even here, should have a limited number of variable attributes (categories) Even here, should have a limited number of variable attributes (categories)  Some find these very intuitive…others struggle It is very easy to misinterpret these critters It is very easy to misinterpret these critters

Interpreting a Contingency Table  WHAT IS IN THE INDIVIDUAL CELLS? The number of cases that fit in that particular cell The number of cases that fit in that particular cell In other words, frequencies (number of cases that fit criteria)In other words, frequencies (number of cases that fit criteria) For small tables, and/or small sample sizes, it may be possible to detect relationships by “eyeballing” frequencies. For most.. For small tables, and/or small sample sizes, it may be possible to detect relationships by “eyeballing” frequencies. For most.. Convert to Percentages: a way to standardize cells and make relationships more apparentConvert to Percentages: a way to standardize cells and make relationships more apparent

Example 1  Random sample of UMD students to examine political party membership Are UMD students more likely to belong to particular political parties? Are UMD students more likely to belong to particular political parties? DemocratDemocrat RepublicanRepublican IndependentIndependent GreenGreen (N=40 UMD students) (N=40 UMD students)

Univariate Table Univariate Table  Null: The distribution is even across all categories.  (N=40 UMD students) CategoriesF% Republican1230% Democrat1435% Independent923% Green510%

Example 2  A survey of 10,000 U.S. residents  Is one’s political view related to attitudes towards police? What are the DV and IV? What are the DV and IV?  Convention for bivariate tables The IV is on the top of the table (dictates columns) The IV is on the top of the table (dictates columns) The DV is on the side (dictates rows). The DV is on the side (dictates rows).

“Bivariate” Table Attitude Towards Police Political Party Total RepubDemocratLibertarianSocialist Favorable Unfav Total

The Percentages of Interest Attitude Towards Police Political Party Total RepubDemocratLibertarianSocialist Favorable2900 (60%) 2100 (54%) 180 (53%) 30 (52%) 5210 Unfav Total

The Test Statistic for Contingency Tables  Chi Square, or χ 2 Calculation Calculation Observed frequencies (your sample data)Observed frequencies (your sample data) Expected frequencies (UNDER NULL)Expected frequencies (UNDER NULL) Intuitive: how different are the observed cell frequencies from the expected cell frequencies Intuitive: how different are the observed cell frequencies from the expected cell frequencies Degrees of Freedom: Degrees of Freedom: 1-way = K-11-way = K-1 2-way = (# of Rows -1) (# of Columns -1)2-way = (# of Rows -1) (# of Columns -1)

“One-Way” CHI SQUARE  The most simple form of the Chi square is the one-way Chi square test  For Univariate Table Do frequencies observed differ significantly from an even distribution?Do frequencies observed differ significantly from an even distribution? Null hypothesis: there are no differences across the categories in the populationNull hypothesis: there are no differences across the categories in the population

Chi Square: Steps 1. Find the expected (under null hypothesis) cell frequencies 2. Compare expected & observed frequencies cell by cell 3. If null hypothesis is true, expected and observed frequencies should be close in value 4. Greater the difference between the observed and expected frequencies, the greater the possibility of rejecting the null

Calculating χ 2  χ 2 = ∑ [(f o - f e ) 2 /f e ] Where F e = Row Marginal X Column Marginal Where F e = Row Marginal X Column MarginalN  So, for each cell, calculate the difference between the actual frequencies (“observed”) and what frequencies would be expected if the null was true (“expected”). Square, and divide by the expected frequency.  Add the results from each cell.

1-WAY CHI SQUARE  1-way Chi Square Example: There is an even distribution of membership across 4 political parties (N=40 UMD students) Find the expected cell frequencies ( F e = N / K) Find the expected cell frequencies ( F e = N / K) Categories FoFoFoFo FeFeFeFe Republican1210 Democrat1410 Independ.910 Green510

1-WAY CHI SQUARE  1-way Chi Square Example: There is an even distribution of membership across 4 political parties (N=40 UMD students) Compare observed & expected frequencies cell-by-cell Compare observed & expected frequencies cell-by-cell Categories FoFoFoFo FeFeFeFe f o - f e Republican12102 Democrat14104 Independ.910 Green510-5

1-WAY CHI SQUARE  1-way Chi Square Example: There is an even distribution of membership across 4 political parties (N=40 UMD students) Square the difference between observed & expected frequencies Square the difference between observed & expected frequencies Categories FoFoFoFo FeFeFeFe f o - f e (f o - f e ) 2 Republican Democrat Independ.9101 Green

1-WAY CHI SQUARE  1-way Chi Square Example: There is an even distribution of membership across 4 political parties (N=40 UMD students) Divide that difference by expected frequency Divide that difference by expected frequency Categories FoFoFoFo FeFeFeFe f o - f e (f o - f e ) 2 (f o - f e ) 2 /f e Republican Democrat Independ Green ∑=∑=∑=∑=4.6

Interpreting Chi-Square  Chi-square has no intuitive meaning, it can range from zero to very large As with other test statistics, the real interest is the “p value” associated with the calculated chi-square value As with other test statistics, the real interest is the “p value” associated with the calculated chi-square value Conventional testing = find χ 2 (critical) for stated “alpha” (.05,.01, etc.)Conventional testing = find χ 2 (critical) for stated “alpha” (.05,.01, etc.) Reject if χ 2 (observed) is greater than χ 2 (critical) Reject if χ 2 (observed) is greater than χ 2 (critical) SPSS: find the exact probability of obtaining the χ2 under the null (reject if less than alpha)SPSS: find the exact probability of obtaining the χ2 under the null (reject if less than alpha)

Example of Chi-Square Sampling Distributions (Assuming Null is True)

Interpreting χ 2 the old fashioned way: The UMD political party example  Chi square = 4.6  df (1-way Chi square) = K-1 = 3  X 2 (critical) (p<.05) = (from Appendix C)  Obtained (4.6) < critical (7.815)  Decision Fail to reject the null hypothesis. There is not a significant difference in political party membership at UMD Fail to reject the null hypothesis. There is not a significant difference in political party membership at UMD

2-WAY CHI SQUARE  For use with BIVARIATE Contingency Tables Display the scores of cases on two different variables at the same time (rows are always DV & columns are always IV) Display the scores of cases on two different variables at the same time (rows are always DV & columns are always IV) Intersection of rows & columns is called “cells” Intersection of rows & columns is called “cells” Column & row marginal totals (a.k.a. “subtotals”) should always add up to N Column & row marginal totals (a.k.a. “subtotals”) should always add up to N N=40 Packers Fan Vikings Fan TOTALS Have most of original teeth Do not have most of original teeth TOTALS:202040

Null Hypothesis for 2-Way χ2 The two variables are independent The two variables are independent Independence: Independence: Classification of a case into a category on one variable has no effect on the probability that the case will be classified into any category of the second variableClassification of a case into a category on one variable has no effect on the probability that the case will be classified into any category of the second variable Fan status (Viking vs. Packer) is not related to whether or not a person has most of their original teeth.Fan status (Viking vs. Packer) is not related to whether or not a person has most of their original teeth. Knowing someone’s fan status will not help you predict their tooth status. Knowing someone’s fan status will not help you predict their tooth status.

N=40 Packers Fan Vikings Fan TOTALS Have most of original teeth 14 (10.5) 7 (10.5) 21 Do not have most of original teeth 6 (9.5) 13 (9.5) 19 TOTALS: WAY CHI SQUARE  Find the expected frequencies F e = Row Marginal X Column Marginal F e = Row Marginal X Column Marginal N “Have teeth” Row = (21 x 20)/40 =420/40=10.5 “Don’t have” Row = (19 x 20)/40 = 380/40= 9.5

χ 2 = ∑ [(f o - f e ) 2 /f e ]  ( ) 2 =  12.25/10.5 = 1.17  (7-10.5) 2 =  12.25/10.5 = 1.17  (6-9.5) 2 =  12.25/9.5 = 1.29  (13-9.5) 2 =  12.25/9.5 = 1.29  Χ 2 observed = 4.92

2-WAY CHI SQUARE Compare expected & observed frequencies cell by cellCompare expected & observed frequencies cell by cell X 2 (obtained) = 4.920X 2 (obtained) = df= (r-1)(c-1) = 1 X 1 = 1df= (r-1)(c-1) = 1 X 1 = 1 X 2 (critical) for alpha of.05 is (Healey Appendix C)X 2 (critical) for alpha of.05 is (Healey Appendix C) Obtained > CriticalObtained > Critical CONCLUSION:CONCLUSION: Reject the null: There is a relationship between the team that students root for and their opinion of Brett Favre (p<.05). Reject the null: There is a relationship between the team that students root for and their opinion of Brett Favre (p<.05).

CHI SQUARE EXAMPLE #2  Is opinion of Governor Dayton related to geographic region of the state within the sample data? Calculate the proper percentages Calculate the proper percentages GEOGRAPHIC REGION ATTITUDECITIESSUBURBSOUT-STATETOTALS POSITIVE NEGATIVE TOTALS

CHI SQUARE EXAMPLE #2  Is opinion of Governor Dayton significantly related to geographic region of the state? Is there a relationship in the POPULATION Is there a relationship in the POPULATION To answer this question, do a chi square test using survey data from sampled Minnesotans (N=75) To answer this question, do a chi square test using survey data from sampled Minnesotans (N=75) GEOGRAPHIC REGION ATTITUDECITIESSUBURBSOUT-STATETOTALS POSITIVE NEGATIVE TOTALS

Conclusions  In the sample, those in the suburbs (56%) were more likely to hold positive attitudes towards Governor Dayton than those from the twin cities (36%) or those from out state (48%). However, none of these differences were statistically significant. We cannot conclude that support for the governor varies across regions in Minnesota. However, none of these differences were statistically significant. We cannot conclude that support for the governor varies across regions in Minnesota. What could we change to make these percentages “statistically significant?” What could we change to make these percentages “statistically significant?”

SPSS Procedure  Analyze  Descriptive Statistics  Crosstabs  Rows = DV  Columns = IV  Cells Column Percentages Column Percentages  Statistics Chi square Chi square

SPSS Exercise  Examine the relationship between sex (male/female) and two other variable in the GSS data. Sex should be the IV (most things cannot change your sex). Sex should be the IV (most things cannot change your sex). Is there a relationship in the sample? Is there a relationship in the sample? PercentagesPercentages Is this relationship significant? Is this relationship significant? Chi squareChi square