Transformations of Sine and Cosine 14 December 2010
Stretch v. Compression Stretch = Fraction!!! Compression = Not a Fraction!!!
Transformations f(x) = a sin(bx – c) + k Vertical Shift Stretch or Compression Period Shift Horizontal Shift Pay attention to the parentheses!!!
Examples Stretch/Compression: Horizontal Shift: Vertical Shift: Stretch/Compression: Horizontal Shift: Vertical Shift:
Your Turn: On the “Transformations of Trigonometric Functions” handout, complete Part A for questions 1 – 4.
Sketching Transformations Step 1: Graph the parent equation Step 2: Identify the correct order of operations for the function Step 3: Make a table that follows the order of operations for the function Step 4: Complete the table for the key points (0,,,, )
*Memorize: y = sin(t) tsin(t)
Example 1: y = -2 sin(t) – 2 t
Example 2: t
Your Turn: On the “Transformations of Trigonometric Functions” handout, complete Parts B and C for problems 1 – 4. On the “Transformations of Trigonometric Functions” handout, complete Parts D – F for problems 1 – 4.
Cosine Graph cos(t) = x tcos t
*Memorize: y = cos(t) tcos t
Transformations f(x) = a cos(bx – c) + k Vertical Shift Stretch or Compression Period Shift Horizontal Shift Pay attention to the parentheses!!!
Cosine Examples Stretch/Compression: Horizontal Shift: Vertical Shift: Stretch/Compression: Horizontal Shift: Vertical Shift:
Your Turn: On the “Transformations of Trigonometric Functions” handout, complete Part A for problems 5 – 8.
Example 1: y = –cos(t) – 1 t
Example 2: t
Your Turn: On the “Transformations of Trigonometric Functions” handout, complete Parts B and C for problems 5 – 8. On the “Transformations of Trigonometric Functions” handout, complete Parts D – F for problems 5 – 8.