Graphing Tangent and Cotangent. Graphing Tangent Curve y = tan (x) 0  /6  /4  /3  /2 2  /3 3  /4 5  /6  7  /6 5  /4 4  /3 3  /2 5  /3 7 

Slides:



Advertisements
Similar presentations
Graphs of Tangent and Cotangent Functions
Advertisements

Tangent and Cotangent Graphs
GRAPHING TRIGONOMETRIC FUNCTIONS
Graphs of Other Trigonometric Functions
Y = tan x  Recall from the unit circle:  that tan  =  tangent is undefined when x = 0.  y=tan x is undefined at x = and x =.
Next  Back Tangent and Cotangent Graphs Reading and Drawing Tangent and Cotangent Graphs Some slides in this presentation contain animation. Slides will.
4.5 – Graphs of the other Trigonometric Functions Tangent and Cotangent.
Copyright © 2009 Pearson Addison-Wesley Graphs of the Circular Functions.
The Other Trigonometric Functions Trigonometry MATH 103 S. Rook.
Graphs of other Trig Functions Section 4.6. Cosecant Curve What is the cosecant x? Where is cosecant not defined? ◦Any place that the Sin x = 0 The curve.
Warm-up Graph the following and find the amplitude, period, increment, S.A., starting point, domain and range. Y = -2sin(2x + 4π) – 1.
Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions Section 7.
Graphing Sine and Cosine
Graphs of Trigonometric Functions Digital Lesson.
Amplitude, Period, & Phase Shift
Graphing Sine and Cosine. Graphing Calculator Mode— Radians Par Simul Window— –X min = -1 –X max = 2  –X scale =  /2 Window— –Y min = -3 –Y max = 3.
Graphing Sine and Cosine. Video Graphing Calculator Mode— Radians Par Simul Window— –X min = -1 –X max = 2  –X scale =  /2 Window— –Y min = -3 –Y max.
1 Properties of Sine and Cosine Functions The Graphs of Trigonometric Functions.
Chapter 3 Graphing Trigonometric Functions 3.1 Basic Graphics 3.2 Graphing y = k + A sin Bx and y = k +A cos Bx 3.3 Graphing y = k + A sin (Bx + C) and.
Chapter 4: Graphing & Inverse Functions Sections 4.2, 4.3, & 4.5 Transformations Sections 4.2, 4.3, & 4.5 Transformations.
Lesson 4-6 Graphs of Secant and Cosecant. 2 Get out your graphing calculator… Graph the following y = cos x y = sec x What do you see??
Graphing Cosecant and Secant. Using the Graphing Calculator Mode— Radians Function Sequential Window— –X min = -  –X max = 3  –X scale =  /6 Window—
Chapter 4 Trigonometric Functions
Graphing Cotangent. Objective To graph the cotangent.
CHAPTER 4 – LESSON 1 How do you graph sine and cosine by unwrapping the unit circle?
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Graphs of the Circular Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1.
14.1, 14.2 (PC 4.5 & 4.6): Graphing Trig Functions HW: p.912 (3-5 all) HW tomorrow: p.913 (6, 10, 16, 18), p.919 (12-16 even) Quiz 14.1, 14.2: Tuesday,
Graph Trigonometric Functions
4.5 and 4.6 Graphs of Trig Functions Obj: to identify amplitude and period of trig functions and translate them.
Periodic Functions. A periodic function is a function f such the f(x) = f(x + np) for every real number x in the domain of f, every integer n, and some.
Do Now:. 4.5 and 4.6: Graphing Trig Functions Function table: When you first started graphing linear functions you may recall having used the following.
Section 4.5 Graphs of Sine and Cosine. Sine Curve Key Points:0 Value: π 2π2π π 2π2π 1.
Graphing Trig Functions Review Whiteboard Activity.
4.5 Graphs of Trigonometric Functions 2014 Digital Lesson.
Sine & Cosine Tangent & Cotangent Secant & Cosecant.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 4 Trigonometric Functions.
4.1 and 4.2 Sine Graph Sine & Cosine are periodic functions, repeating every period of 2  radians: 0 x y 180   90  /  /2 1 y = sin (x)x.
Tangent and Cotangent Functions Graphing. Copyright © 2009 Pearson Addison-Wesley6.5-2 Graph of the Tangent Function A vertical asymptote is a vertical.
6.7 Graphing Other Trigonometric Functions Objective: Graph tangent, cotangent, secant, and cosecant functions. Write equations of trigonometric functions.
Graphing y = tan x x = 0, tan (0) = _____ (, ) x = π/4, tan (π/4) = _____ (, ) x = π/2, tan (π/2) = _____ (, ) x = -π/4, tan (-π/4) = _____ (, ) x = -π/2,
Graphing Trigonometric Functions
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Graphs of the Circular Functions.
GRAPHS OF THE TANGENT AND COTANGENT FUNCTIONS
Splash Screen.
Pre-Calculus Honors 4.5, 4.6, 4.7: Graphing Trig Functions
Trigonometric Graphs 6.2.
Amplitude, Period, & Phase Shift
4 Graphs of the Circular Functions
2.7 Sinusoidal Graphs; Curve Fitting
Splash Screen.
MATH 1330 Section 5.3b.
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
Trigonometric Graphs 1.6 Day 1.
Graphs of Trigonometric Functions
Section 4.6. Graphs of Other Trigonometric Functions
Graphs of Trigonometric Functions
Amplitude, Period, & Phase Shift
Notes Over 9.3 Graphing a Rational Function (m < n)
Graphs of Trigonometric Functions
4.4 Graphs of Sine and Cosine Functions
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Graphs of Secant, Cosecant, and Cotangent
Graphs of Trigonometric Functions
Frequency and Phase Shifts
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Sinusoidal Functions of Sine and Cosine
Graphs of Trigonometric Functions
Graphs of Trigonometric Functions
9.5: Graphing Other Trigonometric Functions
Presentation transcript:

Graphing Tangent and Cotangent

Graphing Tangent Curve y = tan (x) 0  /6  /4  /3  /2 2  /3 3  /4 5  /6  7  /6 5  /4 4  /3 3  /2 5  /3 7  /4 11  /6 2 

Graphing Cotangent Curve y = cot (x) 0  /6  /4  /3  /2 2  /3 3  /4 5  /6  7  /6 5  /4 4  /3 3  /2 5  /3 7  /4 11  /6 2 

Using the Graphing Calculator Mode— Radians Function Sequential Window— –X min = -  –X max = 3  –X scale =  /6 Window— –Y min =-3 –Y max = 3 –Y scale =.5

Press Y= y 1 = tan (x) y 2 = 3tan (x) Press Graph

Press Y= y 1 = tan (x) y 2 = 4tan (x) Press Graph

Press Y= y 1 = tan (x) y 2 = -4tan (x) Press Graph

Press Y= y 1 = tan (x) y 2 = tan (x) +1 Press Graph

Press Y= y 1 = tan (x) y 2 = tan (x +1) Press Graph

Press Y= y 1 = tan (x) y 2 = tan (2x) Press Graph

Press Y= y 1 = tan (x) y 2 = tan (1/2x) Press Graph

Y = A tan (Bx - C) ± D No Amplitude, but determines two points on the graph. Period  |B| Vertical Shift up/down Horizontal Shift Left/Right C B

y = A tan (Bx – C) + D Intercept Maximum? Asymptote Minimum? Intercept Unless A = Negative # Intercept Minimum? Asymptotes Maximum? Intercept

Press Y= y 1 = 1/tan (x) y 2 = 3/tan (x) Press Graph y = cot (x)

Press Y= y 1 = 1/tan (x) y 2 = 4/tan (x) Press Graph

Press Y= y 1 = 1/tan (x) y 2 = -4/tan (x) Press Graph

Press Y= y 1 = 1/tan (x) y 2 = 1/tan (x) +1 Press Graph

Press Y= y 1 = 1/tan (x) y 2 = 1/tan (x +1) Press Graph

Press Y= y 1 = 1/tan (x) y 2 = 1/tan (2x) Press Graph

Y = A cot (Bx - C) ± D Period  |B| Vertical Shift up/down Horizontal Shift Left/Right C B No Amplitude, but determines two points on the graph.

y = A cot (Bx – C) + D Asymptote Maximum? Intercept Minimum? Asymptote Unless A = Negative # Asymptote Minimum? Intercept Maximum? Asymptote

Examples-- y = 3tan (x + 1) -3 Amp.= _______ Period = _____ Horizontal Phase Shift = _________ Vertical Phase Shift = ________ y = cot (x - 2) Amp.= _______ Period = _____ Horizontal Phase Shift = _________ Vertical Phase Shift = ________

y = cot (2x) Amp.= _______ Period = _____ Horizontal Phase Shift = _________ Vertical Phase Shift = ________ y = ½ tan (½ x) + 1 Amp.= _______ Period = _____ Horizontal Phase Shift = _________ Vertical Phase Shift = ________

Graphing by Key Points y = 2 tan x Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /4, ) (  /2, ) (3  /4, ) ( , )

Graphing by Key Points y = -2 cot x Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /4, ) (  /2, ) (3  /4, ) ( , )

Graphing by Key Points y = tan (1/2x) Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /2, ) ( , ) (3  /2, ) (2 , )

Graphing by Key Points y = 3 cot 1 / 2 x Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /2, ) ( , ) (3  /2, ) (2 , )

Graphing by Key Points y = 3 tan x +2 Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /4 ) (  /2, ) (3  /4, ) ( , )

Graphing by Key Points y = cot x - 2 Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (  /4 ) (  /2, ) (3  /2, ) ( , )

Graphing by Key Points y = -tan (x +  ) Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (- , ) (-3  /4, ) (-  /2, ) (-  /4, ) (0, )

Graphing by Key Points y = cot (x -  /4) Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (  /4, ) (  /2, ) (3  /4, ) ( , ) (5  /4, )

Graphing by Key Points y = 4tan (x/2 +  /2) Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (- , ) (-  /2, ) (0, ) (  /2, ) ( , )

Graphing by Key Points y = -cot  x Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ (0, ) (1/4, ) (1/2, ) (3/4, ) (1, )

Graphing by Key Points y = 2tan (x/2 -  /2) -1 Amp = _________ Horizontal Shift = _______ Period = _______ Vertical Shift = _________ Inc. = ________ ( , ) (3  /2, ) (2 , ) (5  /2, ) (3 , )