1 Discrete Fourier Transform
2 Multiply element-by-element
3 Cumulative sum shows:
4 2 signals of same frequency and phase
5 Multiply element-by-element
6 Non-zero cumulative sum
7 Same frequency but /2 phase difference
8 Element-by element product with both sine and cosine waves
9 Cumulative sums
10 Wave: partly sine, partly cosine
11 Element-by-element multiplication
12 Cumulative sum
13 dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 1000, 0.02, 1)
14 dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 1000, 0.05, 1)
15 dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200, 10000, 0.05, 1)
16 dftcomplex2demo(f1, f2, fs, timelen, a1, a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
17 dftcomplex2demo(f1, f2, fs, timelen, a1, a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
18 dftspeech2demo(wavfile, timelen) dftspeech2demo('atest.wav', 0.04)
19 dftspeech2demo(wavfile, timelen) dftspeech2demo('atest.wav', 0.04)
20 Use dB scale and frequencies to F s /2
21 dftspeech2demo(wavfile, timelen) dftspeech2demo(‘itest.wav', 0.04)
22 dftspeech2demo(wavfile, timelen) dftspeech2demo(‘itest.wav', 0.04)
23 DFT Procedure Given the window (frame) length, decide the base frequency Multiply by sine wave at each multiple of base frequency Multiply by cosine wave at each multiple of base frequency Calculate magnitude and phase spectra using
24 Complex Exponential Given the window (frame) length, decide the base frequency Multiply by sine wave at each multiple of base frequency Multiply by cosine wave at each multiple of base frequency Calculate magnitude and phase spectra using
25 Compact Formulae DFT IDFT