Copyright © Cengage Learning. All rights reserved.

Slides:



Advertisements
Similar presentations
Inverse Trigonometric Functions
Advertisements

Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Unit Circle Approach.
Copyright © Cengage Learning. All rights reserved. 6 Inverse Functions.
Copyright © Cengage Learning. All rights reserved. 4 Trigonometric Functions.
Copyright © Cengage Learning. All rights reserved.
Section 4.7 Inverse Trigonometric Functions. A brief review….. 1.If a function is one-to-one, the function has an inverse that is a function. 2.If the.
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.
Copyright © Cengage Learning. All rights reserved. CHAPTER Right Triangle Trigonometry Right Triangle Trigonometry 2.
Inverse Trigonometric Functions
Copyright © 2009 Pearson Education, Inc. CHAPTER 7: Trigonometric Identities, Inverse Functions, and Equations 7.1Identities: Pythagorean and Sum and.
Inverse Trig Functions Remember that the inverse of a relationship is found by interchanging the x’s and the y’s. Given a series of points in.
Inverse Trig Functions. Recall That for a function to have an inverse that is a function, it must be one-to-one—it must pass the Horizontal Line Test.
Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions.
Section 5.5 Inverse Trigonometric Functions & Their Graphs
Copyright © Cengage Learning. All rights reserved. CHAPTER Equations 6.
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
Copyright © Cengage Learning. All rights reserved. Trigonometric Functions: Right Triangle Approach.
Copyright © 2005 Pearson Education, Inc.. Chapter 6 Inverse Circular Functions and Trigonometric Equations.
Section 6.4 Inverse Trigonometric Functions & Right Triangles
Copyright © Cengage Learning. All rights reserved. CHAPTER Radian Measure 3.
Warm-Up: 9/14/12 Find the amplitude, period, vertical asymptotes, domain, and range. Sketch the graph.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 4 Trigonometric Functions.
Copyright © Cengage Learning. All rights reserved. CHAPTER Right Triangle Trigonometry Right Triangle Trigonometry 2.
Section 4.7 Inverse Trigonometric Functions. A brief review….. 1.If a function is one-to-one, the function has an inverse. 2.If the graph of a function.
Inverse Trigonometric Functions 4.7
Chapter 4 Trigonometric Functions Inverse Trigonometric Functions Objectives:  Evaluate inverse sine functions.  Evaluate other inverse trigonometric.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Sum and Difference.
Inverse Trig Functions Objective: Evaluate the Inverse Trig Functions.
Inverse Trig Functions. Recall We know that for a function to have an inverse that is a function, it must be one-to-one—it must pass the Horizontal Line.
H.Melikyan/12001 Inverse Trigonometric Functions.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
5.5 – Day 1 Inverse Trigonometric Functions & their Graphs.
Section 7.4 Inverses of the Trigonometric Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Copyright © Cengage Learning. All rights reserved. 5.1 Using Fundamental Identities.
7.6 – The Inverse Trigonometric Ratios Essential Question: How do you make a function without an inverse have an inverse?
6.2 Trigonometric functions of angles
Trigonometric Functions Section 1.6. Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Chapter 5 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Inverse Trigonometric Functions.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
Analytic Trigonometry 7. Inverse Trigonometric Functions 7.4.
Trigonometry of Right Triangles
Copyright © Cengage Learning. All rights reserved.
The Inverse Trigonometric Functions
Inverse Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Inverse Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Inverse Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Welcome to Precalculus!
Keeper 11 Inverses of the Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Trigonometry of Right Triangles
2.3 Inverse Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Trigonometric Functions
Keeper 11 Inverses of the Trigonometric Functions
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Inverses of the Trigonometric Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. CHAPTER 4 Graphing and Inverse Functions Copyright © Cengage Learning. All rights reserved.

Inverse Trigonometric Functions SECTION 4.7 Inverse Trigonometric Functions Copyright © Cengage Learning. All rights reserved.

Learning Objectives Find the exact value of an inverse trigonometric function. Use a calculator to approximate the value of an inverse trigonometric function. Evaluate a composition involving a trigonometric function and its inverse. Simplify a composition involving a trigonometric and inverse trigonometric function. 1 2 3 4

Inverse Trigonometric Functions First, let us review the definition of a function and its inverse.

Inverse Trigonometric Functions Because the graphs of all six trigonometric functions do not pass the horizontal line test, the inverse relations for these functions will not be functions themselves.

Inverse Trigonometric Functions However, we will see that it is possible to define an inverse that is a function if we restrict the original trigonometric function to certain angles. In this section, we will limit our discussion of inverse trigonometric functions to the inverses of the three major functions: sine, cosine, and tangent.

The Inverse Sine Relation

The Inverse Sine Relation To find the inverse of y = sin x, we interchange x and y to obtain x = sin y This is the equation of the inverse sine relation. To graph x = sin y, we simply reflect the graph of y = sin x about the line y = x, as shown in Figure 2. Figure 2

The Inverse Sine Relation As you can see from the graph, x = sin y is a relation but not a function. For every value of x in the domain, there are many values of y. The graph of x = sin y fails the vertical line test.

The Inverse Sine Function

The Inverse Sine Function If the function y = sin x is to have an inverse that is also a function, it is necessary to restrict the values that x can assume so that we may satisfy the horizontal line test. The interval we restrict it to is .

The Inverse Sine Function Figure 3 displays the graph of y = sin x with the restricted interval showing. Notice that this segment of the sine graph passes the horizontal line test, and it maintains the full range of the function . Figure 3

The Inverse Sine Function Figure 4 shows the graph of the inverse relation x = sin y with the restricted interval after the sine curve has been reflected about the line y = x. Figure 4

The Inverse Sine Function It is apparent from Figure 4 that if x = sin y is restricted to the interval then each value of x between –1 and 1 is associated with exactly one value of y, and we have a function rather than just a relation. The equation x = sin y, together with the restriction forms the inverse sine function. To designate this function, we use the following notation.

The Inverse Sine Function The inverse sine function will return an angle between inclusive, corresponding to QIV or QI.

The Inverse Cosine Function

The Inverse Cosine Function Just as we did for the sine function, we must restrict the values that x can assume with the cosine function in order to satisfy the horizontal line test. The interval we restrict it to is . Figure 5 shows the graph of y = cos x with the restricted interval. Figure 5

The Inverse Cosine Function Figure 6 shows the graph of the inverse relation x = cos y with the restricted interval after the cosine curve has been reflected about the line y = x. Figure 6

The Inverse Cosine Function The equation x = cos y, together with the restriction , forms the inverse cosine function. To designate this function we use the following notation.

The Inverse Cosine Function The inverse cosine function will return an angle between 0 and , inclusive, corresponding to QI or QII.

The Inverse Tangent Function

The Inverse Tangent Function For the tangent function, we restrict the values that x can assume to the interval . Figure 7 shows the graph of y = tan x with the restricted interval. Figure 7

The Inverse Tangent Function Figure 8 shows the graph of the inverse relation x = tan y with the restricted interval after it has been reflected about the line y = x. Figure 8

The Inverse Tangent Function The equation x = tan y, together with the restriction , forms the inverse tangent function. To designate this function we use the following notation.

The Inverse Tangent Function The inverse tangent function will return an angle between and corresponding to QIV or QI.

The Inverse Tangent Function To summarize, here are the three inverse trigonometric functions we have presented, along with the domain, range, and graph for each.

Example 1 Evaluate in radians without using a calculator or tables. a. b. c. Solution: a. The angle between and whose sine is is .

Example 1 – Solution cont’d b. The angle between 0 and  with a cosine of is . c. The angle between and the tangent of which is –1 is .

Example 2 Use a calculator to evaluate each expression to the nearest tenth of a degree. a. b. c. d. e. d. Solution: Make sure the calculator is set to degree mode, and then enter the number and press the appropriate key.

Example 2 – Solution cont’d Scientific and graphing calculators are programmed so that the restrictions on the inverse trigonometric functions are automatic.

The Inverse Tangent Function We will now see how to simplify the result of that example further by removing the absolute value symbol.

Example 3 Simplify for some real number x. Solution: Because , we know from the definition of the inverse tangent function that . For any angle  within this interval, sec  will be a positive value. Therefore, and we can simplify the expression further as

Example 4 Evaluate each expression. a. b. Solution: a. From Example 1a we know that . Therefore,

Example 4 – Solution b. Because will be the angle y, , for which . cont’d b. Because will be the angle y, , for which . The angle satisfying this requirement is y = 45°. So,

Example 7 Write the expression as an equivalent algebraic expression in x only. Solution: We let . Then

Example 7 – Solution cont’d We can visualize the problem by drawing in standard position with terminal side in either QI or QII (Figure 12). Let P = (x, y) be a point on the terminal side of . By Definition I, , so r must be equal to 1. Figure 12

Example 7 – Solution cont’d We can find y by applying the Pythagorean Theorem. Notice that y will be a positive value in either quadrant. Because , This result is valid whether x is positive ( terminates in QI) or negative ( terminates in QII).