TREND DAQ proposal Version II. Trigger module (see C) Trigger inhibit Trigger bypass Threshold value Trigger order FPGA Antenna signal Ch1 Antenna signal.

Slides:



Advertisements
Similar presentations
Controller Tests Stephen Kaye Controller Test Motivation Testing the controller before the next generation helps to shake out any remaining.
Advertisements

Local Trigger Control Unit prototype
MICE Fiber Tracker Electronics AFEII for MICE (Front end readout board) Recall: AFEs mount on ether side of the VLPC cass, with fibers going to the VLPCs.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
Alice EMCAL Meeting, July 2nd EMCAL global trigger status: STU design progress Olivier BOURRION LPSC, Grenoble.
20 Feb 2002Readout electronics1 Status of the readout design Paul Dauncey Imperial College Outline: Basic concept Features of proposal VFE interface issues.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
6 June 2002UK/HCAL common issues1 Paul Dauncey Imperial College Outline: UK commitments Trigger issues DAQ issues Readout electronics issues Many more.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Electrical and Computer Engineering iLights Nick Wittemen, EE Chris Merola, EE José Figueroa, EE Matt Ryder, EE Midway Design Review.
Multichannel Analyzers A multichannel pulse-height analyzer (MCA) consists of an ADC, a histogramming memory, and a visual display of the histogram recorded.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
3/7/05A. Semenov Batch-by-Batch Intensity Monitor 1 Two-Channel Batch by Batch Intensity Monitor for Main Injector BBI.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
September 22, 2005 ESF Workshop-Perugia 1 Virgo Control Electronic upgrade Annecy/Pisa/EGO B.Mours.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
1 S. E. Tzamarias Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Readout Electronics DAQ & Calibration.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
1 of 22 Glaciers and Ice Sheets Interferometric Radar (GISIR) Center for Remote Sensing of Ice Sheets, University of Kansas, Lawrence, KS
GPS based time synchronization of PC hardware Antti Gröhn
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
NEDA collaboration meeting at IFIC Valencia, 3rd-5th November 2010 M. Tripon EXOGAM2 project Digital instrumentation of the EXOGAM detector EXOGAM2 - Overview.
Understanding Data Acquisition System for N- XYTER.
Leo Greiner IPHC meeting HFT PIXEL DAQ Prototype Testing.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
LNL 1 SLOW CONTROLS FOR CMS DRIFT TUBE CHAMBERS M. Bellato, L. Castellani INFN Sezione di Padova.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
21-Aug-06DoE Site Review / Harvard(1) Front End Electronics for the NOvA Neutrino Detector John Oliver Long baseline neutrino experiment Fermilab (Chicago)
Front End DAQ for TREND. 2 Introduction: analog part 2015, feb 10 th.
First ideas for the Argontube electronics Shaper, simulations Block Diagram for analog path Delta Code Data Reduction Bus system, Controller Max.
Features of the new Alibava firmware: 1. Universal for laboratory use (readout of stand-alone detector via USB interface) and for the telescope readout.
HBD FEE test result summary + production schedule 16mv test pulse result –5X attenuator + 20:1 resistor divider at input (to reduce the noise on the test.
Dec.11, 2008 ECL parallel session, Super B1 Results of the run with the new electronics A.Kuzmin, Yu.Usov, V.Shebalin, B.Shwartz 1.New electronics configuration.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Kraków4FutureDaQ Institute of Physics & Nowoczesna Elektronika P.Salabura,A.Misiak,S.Kistryn,R.Tębacz,K.Korcyl & M.Kajetanowicz Discrete event simulations.
Beam diagnostics developments at LAPP: Digital part CTF3 Collaboration Meeting Louis Bellier, Richard Hermel, Yannis Karyotakis, Jean Tassan,
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
GAN: remote operation of accelerator diagnosis systems Matthias Werner, DESY MDI.
BPM stripline acquisition in CLEX Sébastien Vilalte.
LKr readout and trigger R. Fantechi 3/2/2010. The CARE structure.
.1PXL READOUT STAR PXL READOUT requirement and one solution Xiangming Sun.
Readout controller Block Diagram S. Hansen - CD-1 Lehman Review1 VXO Ø Det Links to 24 SiPM Front End Boards Clock Event Data USB ARM uC A D Rd Wrt 100Mbit.
Design of the 64-channel ASIC: update DEI - Politecnico di Bari and INFN - Sezione di Bari Meeting INSIDE, December 18, 2014, Roma Outline  Proposed solution.
PC-based L0TP Status Report “on behalf of the Ferrara L0TP Group” Ilaria Neri University of Ferrara and INFN - Italy Ferrara, September 02, 2014.
PHOTOTUBE SCANNING SETUP AT THE UNIVERSITY OF MARYLAND Doug Roberts U of Maryland, College Park.
 13 Readout Electronics A First Look 28-Jan-2004.
MADEIRA Valencia report V. Stankova, C. Lacasta, V. Linhart Ljubljana meeting February 2009.
Work on Muon System TDR - in progress Word -> Latex ?
"North American" Electronics
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Baby-Mind SiPM Front End Electronics
GRAND instrumental challenges
Iwaki System Readout Board User’s Guide
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
ETD meeting Electronic design for the barrel : Front end chip and TDC
AFE II Status First board under test!!.
DCH FEE 28 chs DCH prototype FEE &
Ongoing R&D in Orsay/Saclay on ps time measurement: a USB-powered 2-channel 3.2GS/s 12-bit digitizer D.Breton (LAL Orsay), E.Delagnes (CEA/IRFU) Séminaire.
A First Look J. Pilcher 12-Mar-2004
Front-end electronic system for large area photomultipliers readout
VELO readout On detector electronics Off detector electronics to DAQ
Status of n-XYTER read-out chain at GSI
Combiner functionalities
PID meeting Mechanical implementation Electronics architecture
Presentation transcript:

TREND DAQ proposal Version II

Trigger module (see C) Trigger inhibit Trigger bypass Threshold value Trigger order FPGA Antenna signal Ch1 Antenna signal Ch2 Antenna signal Ch3 Signal analog shapping (see B) Signal sampling (see D) A: GENERAL DAQ SCHEME FOR ONE DETECTION UNIT Antenna signals or 75Ω load (switch driven by FPGA command) Downstream: data Upstream: Commands & parameters Digitized data GPS 1Hz clock (  t =30ns) Time stamping (see E)

B: analog shaping Signal power containt up to 100MHz, BUT relevant infos are only: - position (  time) of signal maximum - enveloppe of the signal (needed to discriminate between signal (prompt transient) and background (longer + several bumps) No need for fast sampling! We can slow down the signal as long as envelope is recorded. Easier (and cheaper) DAQ. Typical signal Typical background

B: analog shaping Exemple: would signal integration preserves relevant info (  signal envelope)? Integrating filter: H(  ) = 1/(1+j(  /  c ) 4 ) With f c =  c /2  =50MHz Test with data for backround & simulated event for signal. Gain Phase (°)

Legend: input signal Output signal Output signal after 100MHZ sampling Output: clean signal (duration~150ns) Output: dirty signal (duration~600ns) Input ( ) : bckgd event (TREND data 1GHz sampling) Input ( ) : simulated EAS signal Integration seems to preserve signal shape. f c =50MHz and 100MSPS seem OK. To be confirmed with systematic study over larger sample (in progress).

B: analog shaping Possible design Filter MHz G~ -10dB Analog card Antenna (channel 1,2 or 3) integrator Power detector is also possible. It should be slow enough (f c ~50MHz at most) to smooth fast variations of signal. LNA ASIC

Trigger module Comparator 1 Ch1 Threshold 1 (updated at ~Hz rate from uplink fiber) OR Comparator 2 Ch2 Th. 2 Comparator 3 Ch3 Th 3 Trigger by-pass Trigger order FPGA AND Trigger inhibit C: TRIGGER

12-bit ADC for each channel (& 3 channels per detection unit) 5µs event size  MSPS. ADCADC Circular Buffer Memory FIFO - Continuous writing to circular memory (depth= 1Kx12-bit) - At trigger signal, transfer of data of interest to FIFO for 3 channels in parallel. Duration~ 15nsx500=7.5µs. Trigger inibited meanwhile. - After transfert, trigger possible again. - FIFO (2Kx12-bit) to un-randomize entry flux (FIFO size ~ 4 events). - Transfert of total event (3x500words serialized + header) through fiber. -Expected data rate: 3x500x12bx1000Hz/8 ~ 2.2 MBy/s ADCADC Circular Buffer Memory FIFO ADCADC Circular Buffer Memory FIFO Interface Eth fiber 1Gb/S FPGA D: SAMPLING

E: Time stamping A time stamp provides absolute time info at given moment (the time of trigger). Baseline solution: – an internal 32bits-100MHz counter re-synchronized each second on the 1Hz signal from a GPS clock. – Expected precision: 30ns. Important notice: this time stamping is initiated by the trigger module. It is totaly independant from the signal sampling and ADC sampling frequency.

Timing precision Time stamping unit (GPS+100MHz counter) Trigger Generator Gate generated at time t i Time stamp t* i t* i –t i [ns] A 30ns resolution means that t* i- t i should be within ±30ns in 66% of the cases realisations

Time stamping Alternative solution: keep track of ADC counts since the beggining of the run and record ADC count for each trigger (same as present TREND DAQ). As all ADC run at the same pace (100MSPS), relative time info between all antennas can be determined if their relative offset at start of run is determined. This can be done by sending a calibrating signal at a specific time seen by all antennas. To perform ADC count: count the number of full circular buffers + position of pointer in present buffer at time of trigger. This method has not been validated yet. This is R&D we want to test. Therefore we also need GPS method (see before).

1234 i-2i-1 i i+1 Channel x of antenna A t (ns) 1234 i-2 i-1 i i+1 Channel y of antenna B 1234 i-2i-1 i i+1 Channel y of antenna B Undetermined relative offset when ADCs start [~ constant over run duration] : ADC count corresponding to trigger instant on this antenna. Calibrating signal seen by all antennas Comparison of ADC count at trigger instant allows determination of relative ADC offsets. run t=0

Possible mechanical design Filter MHz 9 analog independant encapsulated elements to be screwed on a metalic plate in electrical contact with the external box (same as present in TREND-50). Integrator / power detector LNA ASIC G=15dB ADC FIFO Buff FPGA GPS Trigger module Optical interface Filter MHz Integrator / power detector LNA ASIC G=15dB ADC FIFO Buff Filter MHz 3 antenna channels Integrator / power detector LNA ASIC G=-10dB ADC FIFO Buff Digital card ALIM TRANSFO 220V~ to 12V- Box has to be dust & raintight + no elm radiation BUT allowing heat dissipation. Bias Tee BiasTee used to power ASIC LNA on antennas. To be plugged to coax cable going to antenna. 220V~

Timeline t0: agreement/signature of contract (including definition of specifications & delay penalties) t0 + xx months: first prototype Test & validation (NAOC+France) t0 + yy months: production of 35 units Validation & installation on site

Validation of specs Following steps should be checked: Digital part: Check communication with board from DAQ computer (start/stop DAQ, register data, turn on/off triggers/channels, get monitoring data (see TrendElectronicUnitSpecs.pdf for details) Check that there are triggers on transient pulses (20MHz sine wave in burst of ~100ns duration, amplitude down to trigger threshold) Check max trigger rate (up to 1kHz on average, up to ~100kHz for a short period of burst according to the proposed scheme) Check ADCs relative time offsets/drifts. Check time stamping (send a pulse at given periodicity (eg 1 every 0.001s), check that relative delay between triggers is OK (1ms±30ns) Full chain (analog + digital part) Check that there are triggers on transient pulse (100MHz sine wave in burst of ~100ns duration, amplitude down to trigger threshold) Check that envelope is well recorded (test with several sine wave bursts close to each other or a modulated sine wave). Check precison of amplitude measurement. Test with antenna at input in the lab. Test on the field. The more NAOC can be associated to the tests, the better.

Componant list ADC: 12bits+100MSPS Standard performances are OK. Max price: 100€/unit FPGA: CYCLONE V 5CEFA4F23C6N (40€/unit in France) GPS: UBLOX LEA-6T (60€ / unit in France, antenna not included) Optical interface: Ethernet (50€ for one transmitter + receiver pair)

R&D on signal shaping to be done by TREND. Software & user interface to send commands & retrieve data to be done by TREND. One fiber per detection unit: commands sent upstream, data + monitoring downstream. Enough computers to deal with the expected data flux (on average: 2.2MB/s/unit) should be considered. Go for standard solutions: – FPGA programmation language should be VHDL. – Ethernet much prefered over home-made protocols. Distributed clock as a back-up solution.