Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.

Slides:



Advertisements
Similar presentations
Continuous-Time Fourier Transform
Advertisements

Signals and Fourier Theory
Symmetry and the DTFT If we know a few things about the symmetry properties of the DTFT, it can make life simpler. First, for a real-valued sequence x(n),
HILBERT TRANSFORM Fourier, Laplace, and z-transforms change from the time-domain representation of a signal to the frequency-domain representation of the.
Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.
Fourier Integrals For non-periodic applications (or a specialized Fourier series when the period of the function is infinite: L  ) L -L L  -L  - 
Fourier Transform (Chapter 4)
Fourier Transform – Chapter 13. Image space Cameras (regardless of wave lengths) create images in the spatial domain Pixels represent features (intensity,
Chapter Four Image Enhancement in the Frequency Domain.
Fourier Transform – Chapter 13. Fourier Transform – continuous function Apply the Fourier Series to complex- valued functions using Euler’s notation to.
Properties of continuous Fourier Transforms
Reminder Fourier Basis: t  [0,1] nZnZ Fourier Series: Fourier Coefficient:
EECS 20 Chapter 10 Part 11 Fourier Transform In the last several chapters we Viewed periodic functions in terms of frequency components (Fourier series)
MSP15 The Fourier Transform (cont’) Lim, MSP16 The Fourier Series Expansion Suppose g(t) is a transient function that is zero outside the interval.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
Image Enhancement in the Frequency Domain Part I Image Enhancement in the Frequency Domain Part I Dr. Samir H. Abdul-Jauwad Electrical Engineering Department.
Autumn Analog and Digital Communications Autumn
PROPERTIES OF FOURIER REPRESENTATIONS
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2009 Shreekanth Mandayam ECE Department Rowan University.
Meiling chensignals & systems1 Lecture #04 Fourier representation for continuous-time signals.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communication Systems ECE Spring 2008 Shreekanth Mandayam ECE Department Rowan University.
University of Texas at Austin CS395T - Advanced Image Synthesis Spring 2006 Don Fussell Fourier Transforms.
Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.
Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.
CH#3 Fourier Series and Transform
Systems: Definition Filter
Goals For This Class Quickly review of the main results from last class Convolution and Cross-correlation Discrete Fourier Analysis: Important Considerations.
Signals and Systems Jamshid Shanbehzadeh.
1 Let g(t) be periodic; period = T o. Fundamental frequency = f o = 1/ T o Hz or  o = 2  / T o rad/sec. Harmonics =n f o, n =2,3 4,... Trigonometric.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Linearity Time Shift and Time Reversal Multiplication Integration.
Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.
Fourier Transforms Section Kamen and Heck.
Fourier’s Theorem Beats????. Fourier Series – Periodic Functions.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals.
Chapter 5: Fourier Transform.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Background Any function that periodically repeats itself.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Linearity Recall our expressions for the Fourier Transform and its inverse: The property of linearity: Proof: (synthesis) (analysis)
Astronomical Data Analysis I
CH#3 Fourier Series and Transform
INTRODUCTION TO SIGNALS
15. Fourier analysis techniques
Fourier Transform.
 Introduction to reciprocal space
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
Eeng360 1 Chapter 2 Fourier Transform and Spectra Topics:  Fourier transform (FT) of a waveform  Properties of Fourier Transforms  Parseval’s Theorem.
بسم الله الرحمن الرحيم University of Khartoum Department of Electrical and Electronic Engineering Third Year – 2015 Dr. Iman AbuelMaaly Abdelrahman
Eeng360 1 Chapter 2 Linear Systems Topics:  Review of Linear Systems Linear Time-Invariant Systems Impulse Response Transfer Functions Distortionless.
Fourier Transform and Spectra
The Fourier Transform.
CH#3 Fourier Series and Transform 1 st semester King Saud University College of Applied studies and Community Service 1301CT By: Nour Alhariqi.
Math for CS Fourier Transforms
EE104: Lecture 6 Outline Announcements: HW 1 due today, HW 2 posted Review of Last Lecture Additional comments on Fourier transforms Review of time window.
Math for CS Fourier Transform
Fourier Transform (Chapter 4) CS474/674 – Prof. Bebis.
Hülya Yalçın ©1 Fourier Series. Hülya Yalçın ©2 3.
Digital Image Processing Lecture 8: Fourier Transform Prof. Charlene Tsai.
Lecture 1.26 Spectral analysis of periodic and non-periodic signals.
LECTURE 11: FOURIER TRANSFORM PROPERTIES
Chapter 2. Fourier Representation of Signals and Systems
UNIT II Analysis of Continuous Time signal
Fourier Integrals For non-periodic applications (or a specialized Fourier series when the period of the function is infinite: L) -L L -L- L
Mechatronics Engineering
Fourier Transform and Spectra
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Electrical Communication Systems ECE Spring 2019
LECTURE 11: FOURIER TRANSFORM PROPERTIES
Presentation transcript:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Lecture 3: Fourier Transform Signals and Spectral Methods in Geoinformatics

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform and inverse Fourier transform direct inverse

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics from the number domain to the frequency domain Fourier transform and inverse Fourier transform direct inverse

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform and inverse Fourier transform from the frequency domain to the number domain direct inverse

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in the interval [ 0, Τ ] Fourier transform in the interval (- ,+  ) inverse direct

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform Change of notation

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform Change of notation

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform Change of notation

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics inverse direct From Fourier series to Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics 3 Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The Fourier series expansion of a function in a continuously larger interval Τ, provides coefficients for continuously denser frequencies ω k. As the length of the interval Τ tends to infinity, the frequencies ω k tend to cover more and more from the set of the real values frequencies (  ) For an infinite interval Τ, i.e. for (   t   ) the total real set of frequencies (  ) is required and from the Fourier series expansion we pass to the inverse Fourier transform discrete frequencies ω k wit step Δω = 2π / Τ continuous frequencies - all possible values (      ) Fourier series in a continuously increasing interval Τ  ∞

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics complex form real form Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Notation Usual (mathematically incorect) notation directinverse Fourier transform of a complex function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform of a real function Complex function:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Real function: Fourier transform of a real function Complex function:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Real function: Fourier transform of a real function Complex function:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics cosine transform sine transform Real function: Fourier transform of a real function Complex function:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics cosine transform sine transform Real function: Fourier transform of a real function Complex function:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics even function odd function Fourier transform of a real function

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Fourier transform in polar form |F(ω)||F(ω)|

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics amplitude spectrum phase spectrum polar form: Fourier transform in polar form

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics even function odd function evenodd amplitude spectrum phase spectrum Fourier transform in polar form

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Linearity Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Linearity Symmetry Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Linearity Symmetry Time translation Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Linearity Symmetry Time translation Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Linearity Symmetry Time translation Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Properties of the Fourier transform Phase translation

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Phase translation Modulation theorem Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem Proof: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem signal carrier frequency Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Modulation theorem signal modulated signal carrier frequency Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics (amplitude) spectrum of signal (amplitude) spectrum of modulated signal Properties of the Fourier transform Modulation theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics (amplitude) spectrum of signal (amplitude) spectrum of modulated signal Properties of the Fourier transform Modulation theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics (amplitude) spectrum of signal (amplitude) spectrum of modulated signal Properties of the Fourier transform Modulation theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics (amplitude) spectrum of signal (amplitude) spectrum of modulated signal Properties of the Fourier transform Modulation theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Change of time scale: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Change of time scale: Differentiation theorem with respect to time: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Change of time scale: Differentiation theorem with respect to time: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Change of time scale: Differentiation theorem with respect to time: Differentiation theorem with respect to frequency: Properties of the Fourier transform

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics area =1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics area =1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics area =1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics area =1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics = average value of φ in the interval The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics = average value of φ in the interval The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics 1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics 1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Heaviside step functionDirac delta function 1 1 The Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Properties of the Fourier transform involving the Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Properties of the Fourier transform involving the Dirac delta function δ(t)

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution definition: notation:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution definition: notation:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution property: definition: notation:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Mathematical mapping: Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Mathematical mapping: The value g(t) of the function g for a particular t follows by multiplying each value f(s) of the function f with a factor (weight) h(t-s) which depends on the “distance” t-s between the particular t and the varying s (-∞<s<+∞ ). Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Mathematical mapping: The value g(t) of the function g for a particular t follows by multiplying each value f(s) of the function f with a factor (weight) h(t-s) which depends on the “distance” t-s between the particular t and the varying s (-∞<s<+∞ ). Thus every value g(t) of the function g is a “weighted mean” of the function f(s) with weights h(t-s) determined by the function h(t). Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics area Convolution

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution area

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example area

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution - Example

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution properties

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Convolution properties

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The convolution theorem Convolution is replaced by a simple multiplication in the frequency domain !

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics The convolution theorem Proof:

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Proof: The convolution theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Proof: The convolution theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Proof: The convolution theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Proof: The convolution theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Proof: The convolution theorem

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics CONVOLUTION THEOREM for frequencies

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics CONVOLUTION THEOREM for frequencies

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics PARSEVAL THEOREM

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Similar relation for Fourier series PARSEVAL THEOREM

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics Comparison with Similar relation for Fourier series PARSEVAL THEOREM

Aristotle University of Thessaloniki – Department of Geodesy and Surveying A. DermanisSignals and Spectral Methods in Geoinformatics A. Dermanis Signals and Spectral Methods in Geoinformatics END