ASTRONOMY 161 Introduction to Solar System Astronomy Class 13.

Slides:



Advertisements
Similar presentations
Chapter 8 Formation of the Solar System
Advertisements

Formation of the Solar System
 Our Solar System.
Structure & Formation of the Solar System
ORIGIN OF THE SOLAR SYSTEM Chapter 12. MAJOR PROPERTIES OF THE SOLAR SYSTEM l Each planet is isolated about twice as far from the Sun as its inward neighbour.
View from the top of the Flatirons (Boulder, CO)
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
ASTR100 (Spring 2008) Introduction to Astronomy The Formation of Planets Prof. D.C. Richardson Sections
This Set of Slides This set of slides covers age and formation of solar system, exoplanets. Units covered: 33, 34.
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Origin of the Solar System
Origin of the Solar System Astronomy 311 Professor Lee Carkner Lecture 8.
Orion Nebula: Star-forming Region. Solar Nebula Flattening the Solar Nebula.
1 Chapter 2 Creation of Oceans. 2 Supporting Evidence for the Big Bang Edwin Hubble discovered spreading of galaxies. Cosmic background radiation (the.
Astronomy 1 – Winter 2011 Lecture 11; January
Exam Grades Due to the rush to get exams back, I did not record credit for those who wrote out their own answers. If you did write out your own answer.
Announcements Homework 7 due today Pick up Homework 8 Next test will be next week.
Chapter 8 Welcome to the Solar System. 8.1 The Search for Origins Our goals for learning What properties of our solar system must a formation theory explain?
The Solar System 1 star 9 8 planets 63 (major) moons
The Origin of the Solar System
How our Solar System (and Moon) came to be…. Learning Objectives Be able to explain – How our solar system and moon came to be.
An Introduction to Astronomy Part VI: Overview and Origin of the Solar System Lambert E. Murray, Ph.D. Professor of Physics.
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
Our Solar System and Its Origin. What does the solar system look like?
Chapter 6 Formation of Planetary Systems Our Solar System and Beyond
The Origin of the Solar System
Solar System Observed Properties Solar system is flat – all planets orbit in same direction Two types of planets –Inner: rocky; small, more dense, less.
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
Astronomy 100: Formation and Structure of the Solar System What are the properties of the solar system? How are these properties explained by theories.
Chapter 8 Formation of the Solar System
Comparative Planetology II: The Origin of Our Solar System.
Formation of the Solar System
Lecture Outline Chapter 6: Formation of the Solar System © 2015 Pearson Education, Inc.
CH 25.5 Solar System Formation
Solar Nebula Theory Three things we need to examine:
Survey of the Solar System
Formation of Our Solar System Modified presentation originally created by the Lunar and Planetary Institute Image: Lunar and Planetary Laboratory:
Origin of Solar System Lecture 15. Key Properties of our Solar System Any theory of the origin of the solar system must be able to explain following key.
1 Ch. 23: “Touring Our Solar System” 23.1: “The Solar System”
After the Test 1)Read page 70, then pp and take notes. 2) Select one of the planets, (not Earth) or a moon of a planet and research the following.
Chapter 8 Formation of the Solar System. 8.1 The Search for Origins Our goals for learning: What properties of our solar system must a formation theory.
Survey of the Solar System. Introduction The Solar System is occupied by a variety of objects, all maintaining order around the sun The Solar System is.
23.1 The Solar System The Solar System.
The Solar System Chapter 23, Section 1.
Formation of our solar system: The nebular hypothesis (Kant, 1755) Hydrogen (H), He (He) and “stardust” (heavier elements that were formed in previous.
Solar System Formation And the Stuff that was Left Over.
Grades will be posted in MyUCFGrades Quiz for Ch. 6 has been posted and is due next Mon. night (as usual)
© 2010 Pearson Education, Inc. Formation of the Solar System.
Formation of the Solar System
Copyright © 2012 Pearson Education, Inc. Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond.
Comparative Planetology II: The Origin of Our Solar System Chapter Eight.
Exam 1 next time !!!! Bring your #2 pencils!!!. Where did the solar system come from? Nebular theory.
© 2010 Pearson Education, Inc. Chapter 8 Formation of the Solar System.
Formation of the Solar System
Lecture 32: The Origin of the Solar System Astronomy 161 – Winter 2004.
Our Solar System and Its Origin. 6.4 The Formation of Planets Our Goals for Learning Why are there two types of planets? Where did asteroids and comets.
THE BIRTH OF THE SOLAR SYSTEM. MODELS OF THE SOLAR SYSTEM Geocentric - Everything revolved around earth. (Aristotle and Ptolemy) Heliocentric – Planets.
Formation of the Solar System. The Age of the Solar System We can estimate the age of the Solar System by looking at radioactive isotopes. These are unstable.
Our Solar System
CH 25.5 Solar System Formation Objectives: How did our solar system form? What evidence supports our ideas?
The Gas Giant (Jovian) Planets Jupiter Uranus Saturn Neptune The Terrestrial (Rocky/Metal) Planets Mercury Earth Venus Mars.
Formation of Solar System
1. Survey of the Solar System Chapter 7 © 2010 – 2015 D Taylor.
The Solar System What is our little corner of the Milky Way Galaxy like?
The Formation of Our Solar System The Nebular Hypothesis.
The Formation of the Solar System. The Nebular Hypothesis The Solar System formed ~ 4.6 billion years ago Evidence from:  meteorites ( billion.
The Solar System 1 star 8 planets several dwarf planets many moons
Our Solar System and Its Origin
3A Objectives Describe the nebular theory in detail.
NEBULAR THEORY.
Presentation transcript:

ASTRONOMY 161 Introduction to Solar System Astronomy Class 13

Origin of the Solar System Wednesday, February 7

Origin of the Solar System: Key Concepts How the Solar System formed: (1) A cloud of gas & dust contracted to form a disk- shaped solar nebula. (2) The solar nebula condensed to form small planetesimals. (3) The planetesimals collided to form larger planets. When the Solar System formed: (4) Radioactive age-dating indicates the Solar System is 4.56 billion years old.

Clues to how the Solar System formed: How things move (dynamics) All planets revolve in the same direction. Most planets rotate in the same direction. Planetary orbits are in nearly the same plane.

What things are made of (chemistry) Sun: Mostly hydrogen (H) and helium (He). Jovian planets: Rich in H and He, low density. Terrestrial planets: Mostly rock and metal, high density.

(1) A cloud of gas and dust contracted to form a disk-shaped nebula. The Solar System started as a large, low-density cloud of dusty gas. Such gas clouds can be seen in our Milky Way and other galaxies today.

The gas cloud initially rotated slowly. As the cloud contracted under its own gravity, it rotated faster. (Conservation of angular momentum!) Quickly rotating objects become flattened.

The flat, rapidly rotating cloud of gas and dust was the solar nebula. The central dense clump was the protosun. Similar flat, rotating clouds are seen around protostars in the Orion Nebula.

The contraction of the solar nebula made it spin faster and heat up. (Compressed gas gets hotter.) Temperature of solar nebula: > 2000 Kelvin near Sun; < 50 Kelvin far from Sun.

(2) The solar nebula condensed to form small planetesimals. Approximate condensation temperatures: 1400 Kelvin: metal (iron, nickel) 1300 Kelvin: rock (silicates) 200 Kelvin: ice (water, ammonia, methane) Inner solar system: over 200 Kelvin, only metal and rock condense. Outer solar system: under 200 Kelvin, ice condenses as well.

As the solar nebula cooled, material condensed to form planetesimals a few km across. Inner Solar System: Metal and rock = solid planetesimals Water, ammonia, methane = gas. Outer Solar System: Metal and rock = solid planetesimals Water, ammonia, methane = solid, too. Hydrogen and helium and gaseous everywhere.

(3) The planetesimals collided to form larger planets. Planetesimals attracted each other gravitationally. Planetesimals collided with each other to form Moon-sized protoplanets.

Protoplanets collided with each other (and with planetesimals) to form planets. Inner Solar System: Smaller planets, made of rock and metal. Outer Solar System: Larger planets, made of rock, metal and ice. In addition, outer planets are massive enough to attract and retain H and He.

Collisions between protoplanets were not gentle! Venus was knocked “upside-down”, Uranus and Pluto “sideways”. Not every planetesimal was incorporated into a planet. Comets = leftover icy planetesimals. Asteroids = leftover rocky and metallic planetesimals.

How does this “nebular theory” explain the current state of the Solar System? Solar System is disk-shaped: It formed from a flat solar nebula. Planets revolve in the same direction: They formed from rotating nebula. Terrestrial planets are rock and metal: They formed in hot inner region. Jovian planets include ice, H, He: They formed in cool outer region.

Summary of Solar System formation:

(4) Radioactive age-dating indicates the Solar System is 4.56 billion years old. How old is the Earth (and the rest of the Solar System)? ( = “Universe” in “old days”) One of the basic questions in almost all cultures and religious systems. Archbishop Ussher (AD 1650): 6000 years. Hinduism: eternal cycle of creation and destruction.

18 th century: Realization among European geologists that the Earth is much more than 6000 years old. Earth has a huge number and variety of fossils (the White Cliffs of Dover consist entirely of tiny shells).

Trilobite, Ohio's state fossil

Also, the Earth contains thick layers of sedimentary rock and deeply eroded canyons. Exact measurement of the Earth’s age proved to be difficult.

Radioactive age-dating Radioactive decay: Unstable atomic nuclei emit elementary particles, forming a lighter, stable nucleus. Example: Potassium-40 (19 protons + 21 neutrons = 40) 89% of the time, Potassium-40 decays to Calcium % of the time, Potassium-40 decays to Argon-40.

Half-life of a radioactive material: time it takes for half the nuclei to decay. Example: Potassium-40 has a half-life of 1.3 billion years. Now: 200 atoms of Potassium-40. In 1.3 billion years: 100 atoms of Potassium atoms of Calcium atoms of Argon-40.

In principle, you can find the age of a rock by measuring the ratio of potassium-40 to argon atoms of potassium-40, 11 atoms of argon-40: age equals 1.3 billion years. Higher potassium/argon ration: younger. Lower potassium/argon ration: older. In practice, it is more subtle: Argon is an inert gas; if the rock melts, the argon escapes. Thus, the “radioactive clock” is reset each time the rock melts. But other elements can be used as well.

Age of oldest Earth rocks = 4 billion years Age of oldest Moon rocks = 4.5 billion years Age of oldest meteorites (meteoroids that survive the plunge to Earth) = 4.56 billion years This is the age of the Solar System!

Few closing questions: 1) Can planets still form in our Solar System? 2) Is the Sun older or younger than the planets? 3) Can you think of another consequence of the discussed model of the Solar System origin? 4) Organic life is based on carbon. Where did this carbon come from? 5) Should other planetary systems resemble ours?

Basic problem: A good scientific theory has to be tested, but we only have one Solar System and we cannot go back in time. We needed to find other extrasolar planets! So we did and …