Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 26 Nitrogen Acquisition and Amino Acid Metabolism to accompany.

Slides:



Advertisements
Similar presentations
Proteins: Structure reflects function….. Fig. 5-UN1 Amino group Carboxyl group carbon.
Advertisements

Section M Nitrogen metabolism
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 20 The Tricarboxylic Acid Cycle to accompany Biochemistry, 2/e.
Biochemistry Sixth Edition
Table 25-2Sphingolipid Storage Diseases. Page 979.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 21 Electron Transport and Oxidative Phosphorylation to accompany.
Chapter 17 (Part 1) Amino Acid Metabolism: Nitrogen Assimilation and Amino Acid Biosynthesis.
Chapter 26 Amino Acids Metabolism.
Chapter 17 - Amino Acid Metabolism
Nitrogen Metabolism Copyright  2013 Pearson Canada Inc
Degradation of amino acids Amino acid breakdown can yield: –Acetyl-CoA –  -KG –Succinyl-CoA –OAA –fumarate.
What to Know (protease lecture) Know the general mechanism of serine proteases – what imparts specificity? – how is the substrate stabilized? – how is.
Chapter 25 Nitrogen Acquisition and Amino Acid Metabolism Biochemistry
Amino Acid Metabolism (day-2). What to Know What is the Metabolic Fate of Ammonium? How is Escherichia coli Glutamine Synthetase regulated? Understand.
Role of Amino Acids Protein monomeric units Energy source Precursors of other biological molecules Protein monomeric units Energy source Precursors of.
FCH 532 Lecture 22 Chapter 26: Amino acid metabolism
Chapter 27 The Synthesis and Degradation of Nucleotides to accompany
Figures: Lehninger-4ed; chapter: 18 Stryer-5ed; chapter: 23
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 19 Glycolysis to accompany Biochemistry, 2/e by Reginald Garrett.
Protein Catabolism ?Can you give me some examples of what chemicals you think youve used, or how you think chemistry may have impacted your life?
Anabolism of Nitrogen Compounds
FIGURE (part 2) Urea cycle and reactions that feed amino groups into the cycle. The enzymes catalyzing these reactions (named in the text) are distributed.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 28 Metabolic Integration and Unidirectionality of Pathways to.
Nitrogen Metabolism 1. Nitrogen Fixation 2. Amino Acid Biosynthesis.
Pratt and Cornely Chapter 18
Principles of Biochemistry
The Big Picture of Protein Metabolism Gladys Kaba.
Metabolism of amino acids, purine and pyrimidine bases
Chapter 22 Biosynthesis of amino acids, nucleotides and related molecules 1. Reduction (fixation) of N 2 into ammonia (NH 3 or NH 4 + ) 2. Synthesis of.
Nitrogen Fixation Nitrogen fixation is the reduction of ____________:
Amino acid metabolism · Nitrogen balance protein catabolism, synthesis biosynthesis normal N balance: N ingested = N excreted negative N balance: N ingested.
FCH 532 Lecture 26 Chapter 26: Essential amino acids
PROTEIN METABOLISM: NITROGEN CYCLE; DIGESTION OF PROTEINS Red meat is an important dietary source of protein nitrogen.
18.2 Nitrogen Excretion and the Urea Cycle Produced in liver Blood Kidney  urine.
FCH 532 Lecture 23 Chapter 26: Amino acid metabolism.
February 14 Chapter 26 Amino Acid Metabolism
Fig. 23-1, p.630 Amino acids act principally as the building blocks and to the synthesis of variety of other biologically molecules. When a.acids deaminated.
Overview of Nitrogen Metabolism and Biosynthesis of Amino Acids
Learning Targets “I Can...” -State how many nucleotides make up a codon. -Use a codon chart to find the corresponding amino acid.
Amino acid Metabolism 2 C483 Spring Arginine is biosynthesized from this precursor: A)Pyruvate B)Oxaloacetate C)  -ketoglutarate D)3-phosphoglycerate.
How is the oxidation of pyruvate regulated? PDH complex is regulated by product inhibition and covalent modification Product inhibition: –Acetyl-CoA.
Chapter 22 Biosynthesis of amino acids, nucleotides and related molecules 1. Reduction (fixation) of N 2 into ammonia (NH 3 or NH 4 + ) 2. Synthesis.
Chapter 25 Nitrogen Acquisition and Amino Acid Metabolism Biochemistry by Reginald Garrett and Charles Grisham.
Amino Acid biosynthesis Amino acids are derived from intermediates in glycolysis, citric acid cycle, and PPP pathway Ten of the amino acids have relatively.
17.8 Amino Acid Catabolism Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins During starvation proteins.
FCH 532 Lecture 27 Chapter 26: Essential amino acids
Amino acid metabolism IV. Biosynthesis of nonessential amino acids Figures: Lehninger-4ed; fejezet: 22 (Stryer-5ed; fejezet: 24)
Amino Acid Degradation and Nitrogen Metabolism
Metabolism of amino acids Vladimíra Kvasnicová. Classification of proteinogenic AAs -metabolic point of view 1)biosynthesis in a human body  nonessential.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY Fifth Edition David L. Nelson and Michael M. Cox © 2008 W. H. Freeman and Company CHAPTER 18 Amino Acid Oxidation.
Amino Acid Oxidation and Production of Urea
Nitrogen Acquisition and Amino Acid Metabolism
Amino acids - Classifications, Amino acids Physico – Chemical Properties, Protein structure, folding & function, Nitrogen Cycle Nitrogen Balance, Reductive.
Chapter Twenty-Three The Metabolism of Nitrogen. Nitrogen Fixation Nitrogen fixation is the reduction of N 2 to NH 3: Bacteria are responsible for the.
1.The Nitrogen Cycle 2.Amino Acid Biosynthesis 3.Urea Cycle 4.Amino Acid Catabolism 5.Molecules Derived from Amino Acid (from Lehninger P )
1/ Assimilation of inorganic nitrogen  Many microbes use ammonia (NH 3 ) and nitrate (NO 3 - )as their nitrogen source when organic nitrogen is.
Chapter Twenty-Three The Metabolism of Nitrogen. Nitrogen Fixation Nitrogen fixation is the reduction of N 2 to NH 3 : Bacteria are responsible for the.
Pratt and Cornely Chapter 18
Pratt and Cornely Chapter 18
Amino acid metabolism Metabolism of amino acids differs, but 3 common reactions: Transamination Deamination Decarboxylation.
Amino Acid Metabolism.
MBG304 Biochemistry Lecture 9: Amino acid metabolism
-NITRATE ASSIMILATION-
Reginald Garrett and Charles Grisham
Amino acid synthesis Title slide - amino acid synthesis.
Three major reactions in all cells The Fate of Ammonium Three major reactions in all cells Carbamoyl-phosphate synthetase I two ATP required - one.
The Metabolism of Nitrogen
What is the name of the amino acid shown below?
February 12, 2002 Chapter 26 Nitrogen Acquisition
Presentation transcript:

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 26 Nitrogen Acquisition and Amino Acid Metabolism to accompany Biochemistry, 2/e by Reginald Garrett and Charles Grisham All rights reserved. Requests for permission to make copies of any part of the work should be mailed to: Permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Outline 26.1 The Two Major Pathways of N Acquisition 26.2 The Fate of Ammonium 26.3 Glutamine Synthetase 26.4 Amino Acid Biosynthesis 26.5 Metabolic Degradation of Amino Acids

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Major Pathways for N Acquisition All biological compounds contain N in a reduced form The principal inorganic forms of N are in an oxidized state Thus, N acquisition must involve reduction of the oxidized forms (N 2 and NO 3 - ) to NH 4 + Nearly all of this is in microorganisms and green plants. Animals gain N through diet.

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Overview of N Acquisition Nitrogen assimilation and nitrogen fixation Nitrate assimilation occurs in two steps: 2e - reduction of nitrate to nitrite and 6e - reduction of nitrite to ammonium (page 854) Nitrate assimilation accounts for 99% of N acquisition by the biosphere Nitrogen fixation involves reduction of N 2 in prokaryotes by nitrogenase

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Nitrate Assimilation Electrons are transferred from NADH to nitrate Pathway involves -SH of enzyme, FAD, cytochrome b and MoCo - all protein-bound Nitrate reductases are big kD See Figure 26.2 for MoCo structure MoCo required both for reductase activity and for assembly of enzyme subunits to active dimer

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Nitrite Reductase Light drives reduction of ferredoxins and electrons flow to 4Fe-4S and siroheme and then to nitrite See Figure 26.2b for siroheme structure Nitrite is reduced to ammonium while still bound to siroheme In higher plants, nitrite reductase is in chloroplasts, but nitrate reductase is cytosolic

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzymology of N fixation Only occurs in certain prokaryotes Rhizobia fix nitrogen in symbiotic association with leguminous plants Rhizobia fix N for the plant and plant provides Rhizobia with carbon substrates All nitrogen fixing systems appear to be identical They require nitrogenase, a reductant (reduced ferredoxin), ATP, O-free conditions and regulatory controls (ADP inhibits and NH 4 + inhibits expression of nif genes

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Nitrogenase Complex Two protein components: nitrogenase reductase and nitrogenase Nitrogenase reductase is a 60 kD homodimer with a single 4Fe-4S cluster Very oxygen-sensitive Binds MgATP 4ATP required per pair of electrons transferred Reduction of N 2 to 2NH 3 + H 2 requires 4 pairs of electrons, so 16 ATP are consumed per N 2

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Why should nitrogenase need ATP??? N 2 reduction to ammonia is thermodynamically favorable However, the activation barrier for breaking the N-N triple bond is enormous 16 ATP provide the needed activation energy

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Nitrogenase A 220 kD heterotetramer Each molecule of enzyme contains 2 Mo, 32 Fe, 30 equivalents of acid-labile sulfide (FeS clusters, etc) Four 4Fe-4S clusters plus two FeMoCo, an iron-molybdenum cofactor Nitrogenase is slow - 12 e - pairs per second, i.e., only three molecules of N 2 per second

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Fate of Ammonium Three major reactions in all cells Carbamoyl-phosphate synthetase I –two ATP required - one to activate bicarb, one to phosphorylate carbamate Glutamate dehydrogenase –reductive amination of alpha-ketoglutarate to form glutamate Glutamine synthetase –ATP-dependent amidation of gamma- carboxyl of glutamate to glutamine

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Ammonium Assimilation Two principal pathways Principal route: GDH/GS in organisms rich in N See Figure both steps assimilate N Secondary route: GS/GOGAT in organisms confronting N limitation GOGAT is glutamate synthase or glutamate:oxo-glutarate amino transferase See Figures and 26.13

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Glutamine Synthetase A Case Study in Regulation GS in E. coli is regulated in three ways: –Feedback inhibition –Covalent modification (interconverts between inactive and active forms) –Regulation of gene expression and protein synthesis control the amount of GS in cells –But no such regulation occurs in eukaryotic versions of GS

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Allosteric Regulation of Glutamine Synthetase Nine different feedback inhibitors: Gly, Ala, Ser, His, Trp, CTP, AMP, carbamoyl-P and glucosamine-6-P Gly, Ala, Ser are indicator of amino acid metabolism in cells Other six are end products of a biochemical pathway This effectively controls glutamine’s contributions to metabolism

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Covalent Modification of Glutamine Synthetase Each subunit is adenylylated at Tyr-397 Adenylylation inactivates GS Adenylyl transferase catalyzes both the adenylylation and deadenylylation P II (regulatory protein) controls these AT:P IIA catalyzes adenylylation AT:P IID catalyzes deadenylylation  -ketoglutarate and Gln also affect

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Gene Expression regulates GS Gene GlnA is actively transcribed only if transcriptional enhancer NR I is in its phosphorylated form, NR I -P NR I is phosphorylated by NR II, a protein kinase If NR II is complexed with P IIA it acts as a phosphatase, not a kinase

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Amino Acid Biosynthesis Plants and microorganisms can make all 20 amino acids and all other needed N metabolites In these organisms, glutamate is the source of N, via transamination (aminotransferase) reactions Mammals can make only 10 of the 20 aas The others are classed as "essential" amino acids and must be obtained in the diet All amino acids are grouped into families according to the intermediates that they are made from - see Table 26.1

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The  -Ketoglutarate Family Glu, Gln, Pro, Arg, and sometimes Lys Proline pathway is chemistry you have seen before in various ways Look at ornithine pathway to see the similarity to the proline pathway Note that CPS-I converts ornithine to citrulline in the urea cycle (Figure 26.23) Know the CPS-I mechanism - Figure 26.22

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Urea Cycle N and C in the guanidino group of Arg come from NH 4 +, HCO 3 - (carbamoyl-P), and the  -NH 2 of Glu and Asp Breakdown of Arg in the urea cycle releases two N and one C as urea Important N excretion mechanism in livers of terrestrial vertebrates Urea cycle is linked to TCA by fumarate

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Lysine Biosynthesis in some fungi and in Euglena Lys derived from  -ketoglutarate Must add one C - it’s done as in TCA! Transamination gives  -aminoadipate Adenylylation activates the  -COOH for reduction Reductive amination give saccharopine Oxidative cleavage yields lysine

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Aspartate Family Asp, Asn, Lys, Met, Thr, Ile Transamination of OAA gives Asp Amidation of Asp gives Asn Thr, Met, and Lys are made from Asp (See Figure 26.27)  -Aspartyl semialdehyde and homoserine are branch points Note role of methionine in methylations via S-adenosylmethionine (Fig )

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company The Pyruvate Family Ala, Val, Leu Transamination of pyruvate gives Ala Val is derived from pyruvate Note that Ile synthesis from Thr mimics Val synthesis from pyruvate (Fig ) Leu synthesis, like that of Ile and Val, begins with an  -keto acid Transaminations from Glu complete each of these pathways (Figs )

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company 3-Phosphoglycerate Family Ser, Gly, Cys 3-Phosphoglycerate dehydrogenase diverts 3-PG from glycolysis to aa paths Transamination by Glu gives 3-P-serine Phosphatase yields serine Serine hydroxymethylase (PLP) transfers the  -carbon of Ser to THF to make glycine A PLP-dependent enzyme makes Cys

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Aromatic Amino Acids Phe, Tyr, Trp, His Shikimate pathway yields Phe, Tyr, Trp Note the role of chorismate as a branch point in this pathway (Figs ) Note the ‘channeling’ in tryptophan synthase (Figure 26.39) His synthesis, like that of Trp, shares metabolic intermediates with purine biosynthetic pathway

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Degradation of Amino Acids The 20 amino acids are degraded to produce (mostly) TCA intermediates Know the classifications of amino acids in Figure Know which are glucogenic and ketogenic Know which are purely ketogenic

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company

Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company