Www.soran.edu.iq Industrial chemistry Kazem.R.Abdollah (Asiaban) The Haber Process & The Ostwald Process 1.

Slides:



Advertisements
Similar presentations
Unit 3 Equilibrium.
Advertisements

Topic 7: Equilibrium SL Le Chatelier’s Principle
Equilibrium &The Haber Process
00:33 Syllabus/Unit: code: C2 Chemical Resources Lesson number: 5 Lesson Title: Manufacturing Chemicals - Ammonia Learning OutcomesHow I didTargets Learning.
Introduction to Chemical Equilibrium Chapter 15 CHEM 160.
Equilibrium DP Chemistry R. Slider.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Gaseous Chemical Equilibrium TEXT REFERENCE Masterton and Hurley Chapter 12.
Chemical production of ammonia
Chapter 7.4 – Reaction Rates
Ammonia. Why study ammonia? Why is ammonia used in fertilisers?  it provides nitrogen for plants to make plant proteins  necessary for growth and repair.
Chapter 19 – Production of Ammonia. Properties of Ammonia.
Standard Grade Revision Unit 14 Q. 1 Industrially ammonia (NH 3 ) is made by reacting together nitrogen and hydrogen. (a) What is the source of the (i)
1.Ammonia (alkaline) and nitric acid react together in a neutralisation reaction 2.The fertiliser ammonium nitrate is produced Making Fertilisers Making.
12.5 Do Chemical Reactions Always Release Energy?
Reversible Reactions and Dynamic Equilibrium
Production of Ammonia Aims Explain the conditions in which NO 2 can be formed Describe the Ostwald process.
Haber Process Haber's Process. Summary The Haber Process combines nitrogen from the air with hydrogen derived mainly from natural gas (methane) into ammonia.
Making ammonia The Haber process
Objectives: i. Outline the steps in the manufacture of ammonia from its elements, by the Haber Process. ii. Discuss the uses of ammonia iii. Assess the.
EQUILIBRIUM TIER 5 & TIER 6 TIER 5:Apply the concepts of kinetics and equilibrium to industrial processes TIER 6: Make connections between equilibrium,
Reversible Reactions & Dynamic Equilibrium.  The Haber Process is a REVERSIBLE reaction.  A reversible reaction is one where the products of the reaction.
Liquid nitrogen Group V. Nitrogen and its compounds.
Chapter 14: Chemical Equilibrium Renee Y. Becker Valencia Community College 1.
HIGHER CHEMISTRY REVISION. Unit 3 :- Equilibrium 1. If both potassium iodide solution, KI(aq), and liquid chloroform, CHCl 3 (l), are added to a test tube.
Bell Ringer.
Chemical Equilibrium. Static Equilibrum The entire system is not moving Eg: A meter stick that is suspended at its centre pf gravity. Dynamic Equilibrum.
Efficient wood Gas Kiln Firing How kilns work best.
SULFURIC ACID. H2SO4.
Equilibrium – ‘state of balance’
The structure of the atom ParticleRelative MassRelative Charge Proton11 Neutron10 Electron0 MASS NUMBER = number of protons + number of neutrons SYMBOL.
Equilibrium &The Haber Process
Unit Industrial Chemistry and Hess’s law. Go to question
IB Topic 7: Equilibrium 7.1: Dynamic equilibrium
The Position of Equilibrium
S ulfuric A cid. Present information to describe the steps and chemistry involved in the industrial production of sulfuric acid and analyse the process.
Chemical Equilibrium Chapter 15.
Chemical Equilibrium.
Title: Lesson 3 Equilibrium and Industry
TOPIC 14 Fertilisers Growth of Plants §To grow well plants require elements in the form of water soluble compounds; these are called NUTRIENTS. §The.
The Haber Process: Making Ammonia L.O: To understand the production of ammonia through the haber process.
HABER PROCESS. What is ammonia? It is made industrially by reacting nitrogen with hydrogen in the Haber process. It is a reversible reaction, so it never.
The Contact Process: makes sulphur dioxide; converts the sulphur dioxide into sulphur trioxide (the reversible reaction at the heart of the process); converts.
Equilibria ⇌.
IGCSE CHEMISTRY SECTION 5 LESSON 4. Content The iGCSE Chemistry course Section 1 Principles of Chemistry Section 2 Chemistry of the Elements Section 3.
Unit 3 Industrial Chemistry and Hess’s law. Go to question In the production of ammonia in the Haber Process, Which is a raw material used.
Write down everything you can think of about this reaction:
UNIT 10 COLLISION THEORY, RATE OF REACTION, LE CHATELIER PRINCIPLE.
Manufacturing ammonia. Fertilisers and much more Global production of ammoniaUses YearTonnes of ammonia
7.2 The Position of Equilibrium.. Assessment Statements Deduce the equilibrium constant expression (K c ) from the equation for a homogeneous reaction.
Chapter 16. * Method discovered by German chemist Fritz Haber in * A way to take N 2 from the air and turn it into ammonia. * Previously ammonia.
Equilibria in the Real World – The Haber Process Nobel Prize (Chemistry)1918 for the synthesis of ammonia from air. Fritz Haber
Introducing Nitrogen.
The Haber Process.
Equilbria and Industry QUIZ!!
Ammonia.
Reversible Reactions and Dynamic Equilibrium
Chapter 7.4 – Reaction Rates
Dynamic Equilibrium What does mean?
Unit 3 Industrial Chemistry and Hess’s law
NIKAM N.D. M.Sc.NET DEPARTMENT OF CHEMISTRY
Equilibrium &The Haber Process
Production of Sulfuric Acid
Sulfuric Acid.
Group V. Nitrogen and its compounds.
HABER PROCESS.
2.3 Optimizing Production Chemical Industry
Presentation transcript:

Industrial chemistry Kazem.R.Abdollah (Asiaban) The Haber Process & The Ostwald Process 1

The Haber Process In the early 1900’s a German chemist called Fritz Haber came up with his chemical process to make ammonia using the “free” very unreactive Nitrogen from the air. (N 2 is 80% of atmosphere) Fritz Haber, 1918

The Haber process combines nitrogen from the air with hydrogen derived mainly from natural gas (methane) into ammonia. The reaction is reversible and the production of ammonia is exothermic. Nitrogen + Hydrogen Ammonia

Raw Materials N 2 (g) is taken from the air via a process of fractional distillation. H 2 (g) comes from natural gas, CH 4 (g) CH 4 (g) + H 2 O (g) 3H 2 (g) + CO (g) The carbon monoxide then reacts with more steam: CO (g) + H 2 O (g) H 2 (g) + CO 2 (g)

scheme for the Haber process

The temperature Equilibrium considerations You need to shift the position of the equilibrium as far as possible to the right in order to produce the maximum possible amount of ammonia in the equilibrium mixture. The forward reaction (the production of ammonia) is exothermic. According to Le Chatelier's Principle, this will be favoured if you lower the temperature. However, °C isn't a low temperature!

The compromise The lower the temperature you use, the slower the reaction becomes. A manufacturer is trying to produce as much ammonia as possible per day. It makes no sense to try to achieve an equilibrium mixture which contains a very high proportion of ammonia if it takes several years for the reaction to reach that equilibrium °C is a compromise temperature producing a reasonably high proportion of ammonia in the equilibrium mixture (even if it is only 15%), but in a very short time.

The pressure According to Le Chatelier's Principle, if you increase the pressure the system will respond by favouring the reaction which produces fewer molecules. That will cause the pressure to fall again. Increasing the pressure brings the molecules closer together. In this particular instance, it will increase their chances of hitting and sticking to the surface of the catalyst where they can react. The higher the pressure the better in terms of the rate of a gas reaction.

Economic considerations Very high pressures are very expensive to produce on two counts. You have to build extremely strong pipes and containment vessels to withstand the very high pressure. That increases your capital costs when the plant is built. High pressures cost a lot to produce and maintain. That means that the running costs of your plant are very high. 200 atmospheres is a compromise pressure chosen on economic grounds.

The catalyst The catalyst has no effect whatsoever on the position of the equilibrium. Adding a catalyst doesn't produce any greater percentage of ammonia in the equilibrium mixture. Its only function is to speed up the reaction. The catalyst ensures that the reaction is fast enough for a dynamic equilibrium to be set up within the very short time that the gases are actually in the reactor. The catalyst is actually slightly more complicated than pure iron. It has potassium hydroxide added to it as a promoter - a substance that increases its efficiency.

Ostwald process The Ostwald process is a chemical process for making nitric acid (HNO 3 ). Wilhelm Ostwald developed the process, and he patented it in 1902.

Description Ammonia is converted to nitric acid in 2 stages. It is oxidized (in a sense "burnt") by heating with oxygen in the presence of a catalyst such as platinum with 10% rhodium, to form nitric oxide and water.

Stage 1 This step is strongly exothermic, making it a useful heat source once initiated: 4 NH 3 (g) + 5 O 2 (g) → 4 NO (g) + 6 H 2 O (g) (ΔH = −905.2 kJ)

Stage 2 Stage two encompasses two reactions and is carried out in an absorption apparatus containing water. Initially nitric oxide is oxidized again to yield nitrogen dioxide: This gas is then readily absorbed by the water, yielding the desired product (nitric acid, albeit in a dilute form), while reducing a portion of it back to nitric oxide: 2 NO (g) + O 2 (g) → 2 NO 2 (g) (ΔH = −114 kJ/mol) 3 NO 2 (g) + H 2 O (l) → 2 HNO 3 (aq) + NO (g) (ΔH = −117 kJ/mol) Alternatively, if the last step is carried out in air: 4 NO 2 (g) + O 2 (g) + 2 H 2 O (l) → 4 HNO 3 (aq)

The NO is recycled, and the acid is concentrated to the required strength by distillation. Typical conditions for the first stage, which contribute to an overall yield of about 98%, are: pressure between 4 and 10 atmospheres (approx kPa or psig) and Temperature is about 500 K (approx. 217 °C or °F.).°C°F