Earth Ground Resistance The Basics

Slides:



Advertisements
Similar presentations
Chapter 20 Electricity.
Advertisements

Grounding Electrodes.
The Electrical GuruTM Paul W. Abernathy,CME
Bonding Requirements For Gas Piping Systems Bob Torbin October 2007
GROUNDING SYSTEMS GROUNDING SYSTEMS. The objective of a grounding system are: 1. To provide safety to personnel during normal and fault conditions by.
GROUND FIELD RESISTANCE TESTING
Stray Current Investigations A Method of Troubleshooting Stray Current on Underground Residential Distribution (URD) Loops Stacey Mighty Malcolm Distribution.
Telecom Cabling Grounding and bonding.
EE4503 Electrical Systems Design
ASSIGNMENT TEACHER Smt. K.VASUMATHY GROUP MEMBERS:- MANSI DWIVEDI (ET 4 TH SEM) ARTI DWIVEDI (ET 4 TH SEM) DIKSHA CHANDRAKAR (ET 4 TH SEM) MAMTA CHOUDHARY.
Protection against Lightning Overvoltages Overvoltages due to lightning strokes can be avoided or minimized in practice by (d) shielding the overhead lines.
Condensation Piping and Installation Drain Pans
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Practical Earth Testing Techniques and Measurement Instruments
MUHAMMADALI MC SDE(KAM) KANNUR EARTHING. O BJECTIVES OF EARTHING  To reduce the cross talk and noise  To afford reliable path for circuits involved.
EET Survey of Electronics
“Equipment bonding jumpers: are they always necessary?” Massimo Mitolo, Senior Member, IEEE.
Electric charges in motion CHAPTER 20. Continuos flow of charges: electric current §Flow of charges between two regions with opposite net charges §electrons.
Chapter 26 DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Grounding of Airfield Lighting Joseph Vigilante, PE Penn State/FAA Hershey Conference 2009.
Circuit Protection Electrical circuits require protection to prevent fire or electrocution in the event of a fault. There are two main types of circuit.
Bonding, Grounding and the NEC  Presented by The National Association of Certified Home Inspectors
Earthing / Grounding Issues
Electrical Earthing D.K.Pathirana. Applications of earthing Protect human against lightning and earth fault condition Protect the premises against lightning.
Chapter 4 – Ohm’s Law, Power and Energy Introductory Circuit Analysis Robert L. Boylestad.
The Art of Grounding. Importance of Grounding Earlier, we said that the load center was the heart and soul of the electrical system. Following that trend,
Chapter 5 Series Circuits.
Last Note Number notation Metric conversion Measurement Quiz.
Lecture Outline Chapter 21 Physics, 4th Edition James S. Walker
This photo shows the overall lab and electrolytic tank.
IEEE Wind Farm Collector System Grounding for Personal Safety Summary of Topics.
Grounding, bonding, and ground fault currents
Ch 20 Electricity.
EE1008- ELECTRICAL AND ELECTRONICS MEASUREMENTS AND INSTRUMENTATION
Wiring and Grounding.
Applied Circuit Analysis Chapter 4 - Series Circuits Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Gandhinagar Institute of Technology
EE1008- ELECTRICAL AND ELECTRONICS MEASUREMENTS AND INSTRUMENTATION UNIT -1 Measurement of R, L, C 10/21/2015www.noteshit.com1.
Basics of Ground Rod Testing
2011 MF LRG New Orleans, LA Ground Testers: Two Types Fall-of- Potential “Stakeless” Clamp-on method.
Outdoor Installation 2: Lightning Protection and Grounding Training materials for wireless trainers.
Prof. D. Wilton ECE Dept. Notes 5 ECE 2317 Applied Electricity and Magnetism Notes prepared by the EM group, University of Houston.
GROUND FIELD RESISTANCE TESTING COMPLYING WITH MSHA REGULATIONS.
© 2007 Ideal Industries 1 of 12 Basics Clamp-on Ground Resistance Tester.
JEOPARDY Electricity and Magnetism
Series Circuits.
Electrical Safety Authority
Atlanta IAS Presentation November 2015 Presentation by: Hilton Mills Hood-Patterson & Dewar 850 Center Way, Norcross GA
Starting Residential Wiring.  The most important element in wiring. Safety is proper grounding.  Grounding is the connection of all parts of a wiring.
1 DET4TC2 Measurement of Earth electrode resistance and soil resistivity……….
HOUSE WIRING Final Review. Electricity Electricity = flow of electrons Conductor= electricity passes thru easily - Metal, water, person Insulator = restricts.
HOUSE WIRING NOTES. Electricity  Proton – positive charge  Electron – Negative charge  Electricity = flow of electrons Conductor= electricity passes.
Grounding the Electrical System Reference: AAVIM “Electrical Wiring” Created May 2007.
Chapter 26 DC Circuits. I The wires used in homes to carry electricity have very low resistance. However, if the current is high enough, the power will.
UNIT-5. ELECTRICAL SAFETY, WIRING & INTRODUCTION TO POWER SYSTEM
MI 3290 Earth Analyser Earth testers
AEP’s Ground Grid Resistance Measurement Procedure
Grounding the Electrical System
Grounding And Safety Techniques Ms. Tahoora Qureshi, Asst. Professor
Basic Corrosion Theory
AEP’s Ground Grid Resistance Measurement Procedure
Grounding the Electrical System
ELECTRIC SHOCK AND EARTHING
EARTHING.
POWER QUALITY AND MANAGEMENT. TITLE : EARTH GROUND GRID SYSTEM AND POWER GROUND SYSTEM. PREPARED BY : JOBIN ABRAHAM.
Govt. Polytechnic,Manesar
EET 323 – Electrical System Design Lecture 9: Grounding
Grounding System Design and Testing for Critical Facilities
Chapter 4 – Ohm’s Law, Power and Energy
POWER SYSTEM COMMISSIONING AND MAINTENANCE PRACTICE
Presentation transcript:

Earth Ground Resistance The Basics - Diagnose intermittent electrical problems - Avoid unnecessary downtime - Learn earth ground testing principles

Table of Contents Earth Ground - Foundation Why Ground? Why Test? Grounding basics Methods of earth ground testing Measuring ground resistance Who to Target Size of the Opportunity Why we will win Sales Tools Earth Ground – Sales Information

Earth Ground – Foundation

Ground testing ensures that the intentional grounds are functioning What is a ground? What does it do? What is ground? NEC, Article 100, “A conducting connection, whether intentional or accidental, between an electrical circuit or equipment and the earth, or to some conducting body that serves in place of earth” Beyond the actual definition of a ground, the important point is: - a connection to earth can be intentional or accidental. Ground testing ensures that the intentional grounds are functioning If the intentional path to ground fails and accidental path to ground is disturbed, systems can fail intermittently.

Catch the problem before it happens! Why test grounding systems? What is ground? Catch the problem before it happens! It’s estimated that at least 15% of power quality problems are related to grounding, ensuring good grounding by testing can make certain these problems don’t escalate (source - EPRI) Lightning strikes on equipment with poorly maintained protection systems destroy millions of dollars of equipment and lost production every year (source – www.copper.org) Earth Ground testing should be a part of a customer’s basic PdM program.

What is a good ground value? What is ground? Ideally the ground resistance of a system is zero ohms. But in reality, the goal is to achieve the lowest ground resistance possible that makes sense economically and physically. NFPA & IEEE: Recommends a ground resistance value of 5.0 ohms or less. Telecommunications Industry: Often uses 5.0 ohms or less as their value for grounding or bonding NEC: Make sure the system to ground is 25.0 ohms or less. In facilities with sensitive equipment, it should be 5.0 ohms or less. (source – NEC 250.56)

Components of a ground electrode Ground conductor Connection between the ground conductor and ground electrode Ground electrode

Spheres of Influence When conducting objects are buried in the earth they are described as having a sphere of influence when conducting current to earth. The sphere of influence will vary depending on the shape and size of the conducting object. If two objects are burried close to each other their spheres of influence will overlap and not be as effective as they would be if there were a greater distance apart. When ground testing it‘s important to ensure the test stakes are not effected by the sphere of influence of the ground system under test. There must be proper spacing between ground electrodes and earth stakes to reduce or eliminate their spheres of influence

What affects ground resistance? The NEC code requires a minimum ground electrode length of 2.5 meters (8.0 feet) to be in contact with the soil. But, there are four variables that affect the ground resistance of a ground system: Length / Depth of the ground electrode – double the length, reduce ground resistance by up to 40% Diameter of the ground electrode – double the diameter, lower ground resistance by only 10% Number of ground electrodes – for increased effectiveness, space additional electrodes at least equal to the depth of the ground electrodes Ground system design – single ground rod to ground plate

Types of Ground Systems Depending on the soil type and the level of earth ground resistance you are trying to achieve….. You may choose to install any one of the following ground systems. Single Ground Rod Multiple Ground Electrodes Ground Plate Ground Mesh

Methods of Testing Soil Resistivity – uses four stakes Fall of Potential – uses two stakes Selective Testing – uses one clamp and two stakes Stakeless Testing – uses only two clamps These are the only types of earth ground test methods available today.

Soil Resistivity The purpose of soil resistivity measurements is to quantify the effectiveness of the earth where a grounding system will be installed. So, soil resistivity testing is most necessary when determining the design of the grounding system for new installations. Ideally, you would find a location with the lowest possible resistance. The soil composition, moisture content and temperature of the soil all impact the soil resistivity.

Soil Resistivity - Testing To test soil resistivity, connect the ground tester as shown. The Fluke-1625 generates a known current through the two outer stakes and the drop in voltage potential is measured between the two inner ground stakes. Using Ohm’s Law (V=IR), the Fluke tester automatically calculates the soil resistance.

Soil Resistivity - Calculation Resistivity Measurement From the indicated resistance value RE, the soil resistivity is calculated according to the equation : E = 2  . a . RE   E ...... mean value of soil resistivity (W.m) RE ...... measured resistance (W) a ...... probe distance (m)

Fall of Potential Testing First, the ground electrode of interest must be disconnected from its connection to the site. Two earth stakes are placed in the soil in a direct line – away from the earth electrode. Normally, a spacing of 20 meters is sufficient. A known current is generated by the Fluke 1625 between the outer stake and the ground electrode, while the voltage potential is measured between the inner earth stake and the earth electrode.

Fall of Potential Testing (II) To test the accuracy of the results and to ensure that the ground stakes are outside the sphere of influence, reposition the inner stake 1 meter and take a fresh measurement. If there is a significant change in the reading (30%) you need to increase the distance between the ground electrode under test and the earth stakes.

Selective Testing The selective method is based on the Fall of Potential test, however it‘s not necessary to disconnect the ground electrode under test ! A current clamp is used to isolate the test current injected into the electrodes under test, the current will flow to earth by any path. By isolating the current, with use of the current clamp, the ground resistance of individual elements can be measured without disconnecting.

Selective Testing (II) If the total resistance of the ground system should be measured, then each earth electrode resistance must be measured by placing the clamp around each individual earth electrode. Then the total resistance of the ground system can be determined by calculation.

Selective Testing - Application This application example, at a central office, shows the benefit of the selective test in a typical installation. First, position the ground spikes according to the requirements of the system under test.

Selective Testing - Application Once the spikes are placed, individual elements of the system can be measured. No need to disconnect the ground system ! In this example, measurements are taken at the MGN (multi grounded neutral) ground field, water pipe, structural or building steel

Stakeless Testing The stakeless method eliminates the need for temporary ground stakes. This is useful in a wide range of situations. Examples include: Inside buildings Airports Urban locations Chemical and industrial plants The stakeless method is not available on all ground testers. However, it comes standard on the Fluke 1623 and 1625 earth ground testers. The temporary ground stakes are replaced by two current clamps. The first clamp generates a voltage on the ground condutor, the second clamp measures the current flowing due to the generated voltage.

Stakeless Testing The Fluke 1623 and 1625 testers are able to measure earth ground loop resistances for multi grounded systems using only current clamps. With this test method, two clamps are placed around the earth ground rod or connecting cable and each connected to the tester. Earth ground stakes aren‘t used at all.

Stakeless Testing The Fluke testers work on the principle that the parallel/multi-grounded sysems, the net resistance of all ground paths will be extremely low as compared to any single path (the one under test). So, the net resistance of all the parallel return path resistances is effectively zero. If the ground system is not parallel to earth then you will either have an open circuit, or be measuring ground loop resistance.

Stakeless Testing - Application The clamps are placed around the ground conductor The stakeless method does not need a lot of parallel paths to be present to ensure good results.

Stakeless Testing - Details If there is only one path to ground, like at many residential applications, the stakeless method will not provide an acceptable value and the Fall of Potential test method must be used. An abnormally high reading or an open circuit indication on the instrument points to a poor connection between two or more of the aforementioned critical components. An abnormally low reading could indicate the instrument is measuring a loop of bonding conductors.

Two Pole ground resistance Used where other methods are not available. Uses nearby metal structures as a temporary spike. Metal water pipes are typically used. Drawbacks: The resistance of the metal pipe should be significantly less than the electrode under test. Metal pipes are being replaced with plastic. Some metal pipes use plastic couplings.

Selecting a Test Method Advantages Drawbacks Fall-of-Potential Widely accepted You have to disconnect ground The stakes may not be easy to drive There may not be space around the ground electrode to drive the stakes Selective Method Don’t have to disconnect electrode Stakeless Method Convenience Assumes a low-impedance parallel path Possible to get very low readings by mistakenly measuring on a hard-wired loop Two-pole Method Impossible to judge the integrity of the “auxiliary electrode.” Can’t be sure you are outside the area of influence

Introducing the new Fluke 1623 & 1625 Earth Ground Testers

Choosing the right instrument