1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton.

Slides:



Advertisements
Similar presentations
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
Advertisements

XP #802 - Biased Electrodes S.J. Zweben, R.J. Maqueda, L. Roquemore, R.J. Marsala, Y. Raitses, R. Kaita, C. Bush R.H. Cohen, D.D. Ryutov, M. Umansky (LLNL)
Institute of Interfacial Process Engineering and Plasma Technology Gas-puff imaging of blob filaments at ASDEX Upgrade TTF Workshop.
Two-dimensional Structure and Particle Pinch in a Tokamak H-mode
High speed images of edge plasmas in NSTX IEA Workshop Edge Transport in Fusion Plasmas September 11-13, 2006 Kraków, Poland GPI outer midplane – shot.
Institut für Plasmaforschung Universität Stuttgart Long-distance correlation of fluctuations under strong ExB shear in TJ-K P. Manz, M. Ramisch, U. Stroth.
Paper O4.007, R. A. Pitts et al., 34th EPS Conference: 5 July 2007 Neoclassical and transport driven parallel SOL flows on TCV R. A. Pitts, J. Horacek.
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
X.Q. Xu 1, R.H. Cohen 1, W.M. Nevins 1, T.D. Rognlien 1, D.D. Ryutov 1, M.V. Umansky 1, L.D. Pearlstein 1, R.H. Bulmer 1, D.A. Russell 2, J.R. Myra 2,
ELM filament structure in the National Spherical Torus Experiment R. J. Maqueda Nova Photonics Inc., New Jersey R. Maingi Oak Ridge National Laboratory,
IOS-5.2 Maintaining ICRH Coupling in expected ITER regime Spokes person: M. Goniche M.-L. Mayoral (JET), R. Pinsker (DIII-D), L. Colas (TS), V. Bobkov.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Parallel and Poloidal Sheared Flows close to Instability Threshold in the TJ-II Stellarator M. A. Pedrosa, C. Hidalgo, B. Gonçalves*, E. Ascasibar, T.
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
XP-746: ELM characterization in NSTX R. J. Maqueda Nova Photonics Inc. and the NSTX Research Team ’07 Results Review July 23-24, 2007 PPPL.
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Plasma Dynamics Lab HIBP E ~ 0 V/m in Locked Discharges Average potential ~ 580 V  ~ V less than in standard rotating plasmas Drop in potential.
Fast Imaging of Visible Phenomena in NSTX R. J. Maqueda Nova Photonics C. E. Bush ORNL L. Roquemore, K. Williams, S. J. Zweben PPPL 47 th Annual APS-DPP.
TITLE: Scaling of the far SOL turbulence as a function of (1), the average density keeping other plasma parameters constant. (3), the plasma current keeping.
M. Hron ETFP workshop Kraków 11/09/2006 Presented by M Hron J Stockel, J Brotankova, I Duran, J Adamek, M Stepan, O Bilykova M Spolaore, E Martines, P.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
Flows, Turbulence, and the Edge Plasma in NSTX C.E. Bush, S. Zweben, R. Maqueda, W. Davis, D. Johnson, R. Kaita, H. Kugel, L. Roquemore, G. Wurden and.
Edge Turbulence Imaging During L-H Transitions in NSTX S.J. Zweben, R.J. Maqueda, T. Munsat, D. P. Stotler, T.M. Biewer, C.E. Bush, B. LeBlanc, R. Maingi,
1 Results and analysis of Gas Puff Imaging experiments in NSTX: turbulence, L-H transitions, ELMs and other phenomena R.J. Maqueda Nova Photonics S.J.
1 Blobs in the divertor region R. J. Maqueda (Nova Photonics) Although some understanding is emerging on the generation and evolution of blobs from the.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,
NSTX Boundary Density Fluctuation Measurement by FIReTIP System with USN/LSN Configurations K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
ASIPP 1 EAST 上充气成像诊断研制及边界湍流 实验研究 邵林明 导师:徐国盛
High Speed Imaging of Edge Turbulence in Magnetic
Study of NSTX Electron Density and Magnetic Field Fluctuation using the FIReTIP System K.C. Lee, C.W. Domier, M. Johnson, N.C. Luhmann, Jr. University.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
Relationship Between Edge Zonal Flows and L-H Transitions in NSTX S. J. Zweben 1, T. Munsat 2, Y. Sechrest 2, D. Battaglia 3, S.M. Kaye 1, S. Kubota 4.
J. Boedo, UCSD Fast Probe Results and Plans By J. Boedo For the UCSD and NSTX Teams.
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
Institut für Plasmaforschung Universität Stuttgart Plasma Turbulence at the Transition from Closed to Open Fieldlines Mirko Ramisch
High Speed Imaging of Edge Turbulence in NSTX S.J. Zweben, R. Maqueda 1, D.P. Stotler, A. Keesee 2, J. Boedo 3, C. Bush 4, S. Kaye, B. LeBlanc, J. Lowrance.
Parallel Correlation of SOL Turbulence S.J. Zweben, F. Scotti, J.W. Ahn, T. Gray, M. Jaworski, S. Kubota, R. Maqueda, N. Mandell, D. Smith, V. Soukhanovskii.
11/12/2004J. Boedo APS 04 Reciprocating Probe Edge/SOL Profiles in NSTX J. Boedo H. Kugel, D. Rudakov, H. Ji, T. Carter, N. Crocker, D. Rudakov, M. Umansky,
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Changes in Edge Turbulence with  * and Toroidal Rotation Input in NSTX M. Gilmore, S. Kubota, W.A. Peebles, and X.V. Nguyen Electrical Engineering Dept.,
Edge Turbulence in High Density Ohmic Plasmas on NSTX K.M. Williams, S.J. Zweben, J. Boedo, R. Maingi, C.E. Bush NSTX XP Presentation Draft 5/25/06.
Distributions of plasma parameters and observation of intermittency in edge plasma of SUNIST W H Wang, Y X He, and SUNIST Team Department of Engineering.
1Field-Aligned SOL Losses of HHFW Power and RF Rectification in the Divertor of NSTX, R. Perkins, 11/05/2015 R. J. Perkins 1, J. C. Hosea 1, M. A. Jaworski.
Biased Electrode Experiment S.J. Zweben, R.J. Maqueda, L. Roquemore, R.J. Marsala, Y. Raitses, R. Kaita, C. Bush R.H. Cohen, D.D. Ryutov, M. Umansky (LLNL)
Investigating small-scale edge turbulence with GPI Noah Mandell, Stewart Zweben, Walter Guttenfelder, Yang Ren, Steve Sabbagh NSTX T&T Forum /25/2015.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Simulation of Turbulence in FTU M. Romanelli, M De Benedetti, A Thyagaraja* *UKAEA, Culham Sciance Centre, UK Associazione.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
1 Boundary Physics Five Year Plan R. Maingi, H. Kugel* and the NSTX Team Oak Ridge National Laboratory * Princeton Plasma Physics Laboratory Five Year.
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
NSTX APS-DPP: SD/SMKNov Abstract The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and.
Gas Puff Imaging (GPI) diagnostic Summary of C-Mod GPI results GPI diagnostic set-up in NSTX GPI data from NSTX ‘01 run Interpretation of GPI signals Tentative.
Features of Divertor Plasmas in W7-AS
Overview of Indian activities in P&EP
Development and Analysis of Gas Puff CXRS in SOL
Experimental Plan for the New Wall-Actuated Scanning Probe (WASP)
XGC simulation of CMOD edge plasmas
V. Rozhansky1, E. Kaveeva1, I. Veselova1, S. Voskoboynikov1, D
Presentation transcript:

1 Edge Electrode Biasing Experiments on NSTX S. Zweben, C. Bush, R. Maqueda, L. Roquemore, R. Marasla M. Bell, J. Boedo, R. Kaita, Y. Ratises, B. Stratton R. Cohen, D. Ryutov, M. Umansky (LLNL) NSTX Meeting 5/21/07 Basic idea for SOL control Theory and previous experiments Biased Electrodes and Probes (BEaP) in NSTX Initial results from checkout of hardware (XMP-051) Additional tests which can be done in this run

2 SOL Control by Edge Biasing separatrix wall + - E pol VrVr - V r (cm/sec) = 10 8 E pol (V/cm)/B(G) -turbulent ‘blob’ speed ≤ 1 km/sec  need only V r ~ 5 V/cm to broaden SOL in NSTX (because of low B) Create localized poloidal electric fields in SOL to make local radial V r =E pol xB drift to drive plasma outward If V r is larger than the outward turbulent transport speed, local SOL width will be increased (particles and heat)

3 Theory of Active SOL Broadening Apply toroidally asymmetric perturbations in SOL near divertor plate to create ExB flows to induce turbulent broadening [R.H. Cohen et al, Nucl. Fusion (1997); D.D. Ryutov et al, PPCF (2001), R.H. Cohen et al, PPCF (2007)] - perturbations can be biasing, ‘wavy’ plates, gas puffing - effects confined to divertor region by X-point shear - potential distribution along B-field line was calculated Open questions: - how far do perturbations extend along and across B ? - do these perturbations locally induce turbulence ? - can the effects be simulated with BOUT (or XGC) ?

4 Most tokamak biasing experiments aimed to modify E r and poloidal flow [e.g. PBX-M, DIII-D, TdeV, TEXTOR…] MAST experiment done to test idea of Cohen and Ryutov, resulting in partial confirmation of theory Previous Experiments G.F. Counsell, EPS Conference (2003) biased (and grounded) “ribs” in divertor (~80 V, 3 kA total) peak of D 

5 NSTX Electrode Biasing Experiment Locate electrodes on B field line of GPI to see effect of bias on local turbulence and D  profile (e.g. see ‘blobs’ move faster outward, or inward) Include Langmuir probes between the electrodes to measure potential, n e and T e, and turbulence Correlate fluctuations in probe and GPI to determine location of electrodes in GPI field of view Did not expect to make “global” modification of SOL or plasma with this initial set-up !

6 Biased Electrodes and Probes in NSTX installed ~ Dec. ‘06 leading edge ~ 1 cm behind RF limiter 4 electrodes and 5 Langmuir probes look for effect of bias in GPI and probes Biased electrodes and probes (BEaP) GPI puffer RF ant. Bay B B

7 Closer View of BEaP Present capabilities: ± 100 V, 10 A on any two electrodes 5 swept probes change outer gap to control density at electrodes

8 Initial Results (from 3 shots) Electrode and probe currents and voltages Effect of biasing on probe signals Mapping of fluctuations from probes to GPI Effect of biasing on GPI signals

9 Currents and Voltages vs. Time I=0.8 MA B=4.5 kG outer gap 15 cm => 1 cm electrode V Hz electrode I sat,i ≤ 2 amps ave. probe I sat,e ≤ 0.3 amps ave.

10 Electrode Configurations Tried Should have made E pol ~ ± 35 Volts/4 cm ~ ±10 V/cm between Electrodes #1 and #2 Should have made E pol ~ 70 Volts/4 cm ~ 20 Volts between Electrodes #2 and #3

11 Effect of Biasing on Probe Currents No visible effect of biasing on mean or rms/mean of any probes signals Might have expected density to change if large V r were made Would have expected rms/mean to change if turbulence was affected by V r

12 Effect of Bias on Probe Correlations No visible effect of biasing on probe cross-correlation or autocorrelation time Might have expected these to change if large Vr was created

13 Mapping from Probes to GPI Time -> #1 #2 #3 #4 #5 probe Good correlation of fluctuations across ~ 1 m along B field (C 12 ~ 50-80%) Agrees well with EFIT02 field lines Size of correlation volume ~ blob size as expected

14 Effect of Bias on GPI Turbulence No visible effect on turbulent structures or motion Electrode #1 Electrode #2 Electrode #3

15 Effect of Bias on Local D  Profiles on off on off on off D  intensity profiles Poloidal distance red = on black = off No visible effect of bias on local D  profiles 10 msec averages Poloidal distance from Electrode #1 to Electrode #3

16 Summary and Plans So far, no visible effect of electrode biasing on local edge plasma (still can do more data analysis) Would like to try ~ 6-8 more test shots: - increase electrode voltage from -70 to -100 Volts - increase electrode current from ~ 2 to ~ 10 amps - decrease B field from 4.5 to 3 kG to increase V r Collaborate with LLNL and CPES to understand results Possibly upgrade hardware for next run (divertor bias ?)