Standard Electrode Potentials When the concentrations of Cu 2+ (aq) and Zn 2+ (aq) are both kept at unit activity, the emf of the galvanic cell is 1.10 V at 25 o C. (V is the unit for voltage). 1801
Standard Electrode Potentials When the concentrations of Cu 2+ (aq) and Zn 2+ (aq) are both kept at unit activity, the emf of the galvanic cell is 1.10 V at 25 o C. (V is the unit for voltage). Recall: The activity of a species X can be written as where is called the activity coefficient. 1802
Standard Electrode Potentials When the concentrations of Cu 2+ (aq) and Zn 2+ (aq) are both kept at unit activity, the emf of the galvanic cell is 1.10 V at 25 o C. (V is the unit for voltage). Recall: The activity of a species X can be written as where is called the activity coefficient. For fairly dilute solutions,, so that. 1803
Standard Electrode Potentials When the concentrations of Cu 2+ (aq) and Zn 2+ (aq) are both kept at unit activity, the emf of the galvanic cell is 1.10 V at 25 o C. (V is the unit for voltage). Recall: The activity of a species X can be written as where is called the activity coefficient. For fairly dilute solutions,, so that. We will make the gross assumption (as does the text) that at a concentration of 1 M, and replace unit activity for Cu 2+ (aq) and Zn 2+ (aq) by concentrations of 1 M. 1804
The value of the emf is independent of the amount of solution or the size of the electrodes. 1805
The value of the emf is independent of the amount of solution or the size of the electrodes. The measured emf can be treated as the sum of the two electric potentials arising from the Zn and Cu electrodes. 1806
The value of the emf is independent of the amount of solution or the size of the electrodes. The measured emf can be treated as the sum of the two electric potentials arising from the Zn and Cu electrodes. It is impossible to measure the potential of a single electrode: any complete circuit must by necessity, contain two electrodes. 1807
The value of the emf is independent of the amount of solution or the size of the electrodes. The measured emf can be treated as the sum of the two electric potentials arising from the Zn and Cu electrodes. It is impossible to measure the potential of a single electrode: any complete circuit must by necessity, contain two electrodes. A simple way out of this dilemma is to chose a certain electrode and arbitrarily set its potential value to zero volts. 1808
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. 1809
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. The standard hydrogen electrode is chosen as the reference (abbreviated as SHE). 1810
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. The standard hydrogen electrode is chosen as the reference (abbreviated as SHE). The reaction is 2 H + (aq) + 2e - H 2(g) E 0 = 0 V 1811
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. The standard hydrogen electrode is chosen as the reference (abbreviated as SHE). The reaction is 2 H + (aq) + 2e - H 2(g) E 0 = 0 V (1 M) (1 bar) 1812
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. The standard hydrogen electrode is chosen as the reference (abbreviated as SHE). The reaction is 2 H + (aq) + 2e - H 2(g) E 0 = 0 V (1 M) (1 bar) The symbol for the emf is E cell (some use just E). 1813
This electrode can then be used to determine the potentials of other electrodes by measuring the emf of various cells. The standard hydrogen electrode is chosen as the reference (abbreviated as SHE). The reaction is 2 H + (aq) + 2e - H 2(g) E 0 = 0 V (1 M) (1 bar) The symbol for the emf is E cell (some use just E). The superscript 0 denotes standard state conditions, which for the present case refers to H + (aq) at 1 M, H 2(g) at 1 bar, and a reference temperature of exactly 25 o C is assumed. 1814
For a half-cell reaction at standard conditions, the notation E 0 is employed. Other notation that is employed is or sometimes, this latter one signifying that it is a standard reduction potential. Standard emf: The potential difference between two electrodes which can be measured for a given cell when all solutes are at a concentration of 1 M and all gases are at 1 bar. 1815
Suppose we want to determine the for the reaction Cu 2+ (aq) + 2 e - Cu (s) then set up the cell with a SHE, so that: anode: H 2(g) 2 H + (aq) + 2e - = 0 V cathode: Cu 2+ (aq) + 2 e - Cu (s) = ? overall reaction: H 2(g) + Cu 2+ (aq) 2 H + (aq) + Cu (s) = 0.34 V Since the two values must add to 0.34 V, therefore = 0.34 V for the Cu 2+ half-reaction. 1816
1817
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) 1818
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) can be measured with a SHE, so that: 1819
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) can be measured with a SHE, so that: anode: Zn (s) Zn 2+ (aq) + 2 e - = ? 1820
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) can be measured with a SHE, so that: anode: Zn (s) Zn 2+ (aq) + 2 e - = ? cathode: 2 H + (aq) + 2e - H 2(g) = 0 V 1821
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) can be measured with a SHE, so that: anode: Zn (s) Zn 2+ (aq) + 2 e - = ? cathode: 2 H + (aq) + 2e - H 2(g) = 0 V overall reaction: 2 H + (aq) + Zn (s) H 2(g) + Zn 2+ (aq) = 0.76 V 1822
The standard electrode potential for the reaction Zn 2+ (aq) + 2 e - Zn (s) can be measured with a SHE, so that: anode: Zn (s) Zn 2+ (aq) + 2 e - = ? cathode: 2 H + (aq) + 2e - H 2(g) = 0 V overall reaction: 2 H + (aq) + Zn (s) H 2(g) + Zn 2+ (aq) = 0.76 V Since the two values must add to 0.76 V, therefore = 0.76 V for the Zn half-reaction. 1823
1824
1825
1826
Standard reduction potential: The voltage associated with a reduction at an electrode when all solutes are 1 M and all gases are at 1 bar. 1827
Standard reduction potential: The voltage associated with a reduction at an electrode when all solutes are 1 M and all gases are at 1 bar. It is most common to table information as reductions potentials. 1828
1829
Standard reduction potential: The voltage associated with a reduction at an electrode when all solutes are 1 M and all gases are at 1 bar. It is most common to table information as reductions potentials. Standard oxidation potential: The voltage associated with an oxidation at an electrode when all solutes are 1 M and all gases are at 1 bar. 1830
The standard oxidation potential for the Zn electrode reaction: Zn (s) Zn 2+ (aq) + 2 e
The standard oxidation potential for the Zn electrode reaction: Zn (s) Zn 2+ (aq) + 2 e - is = 0.76 V 1832
The standard oxidation potential for the Zn electrode reaction: Zn (s) Zn 2+ (aq) + 2 e - is = 0.76 V When we reverse the half-cell reaction, we must change the sign of. 1833
The standard oxidation potential for the Zn electrode reaction: Zn (s) Zn 2+ (aq) + 2 e - is = 0.76 V When we reverse the half-cell reaction, we must change the sign of. Thus the standard reduction potential for the reaction: Zn 2+ (aq) + 2 e - Zn (s) 1834
The standard oxidation potential for the Zn electrode reaction: Zn (s) Zn 2+ (aq) + 2 e - is = 0.76 V When we reverse the half-cell reaction, we must change the sign of. Thus the standard reduction potential for the reaction: Zn 2+ (aq) + 2 e - Zn (s) is = V 1835
Calculation of 1836
Calculation of Example: Calculate for the reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) assuming a table of is available. 1837
Calculation of Example: Calculate for the reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) assuming a table of is available. From the table of values the following is available 1838
Calculation of Example: Calculate for the reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) assuming a table of is available. From the table of values the following is available Zn 2+ (aq) + 2 e - Zn (s) = V 1839
Calculation of Example: Calculate for the reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) assuming a table of is available. From the table of values the following is available Zn 2+ (aq) + 2 e - Zn (s) = V Cu 2+ (aq) + 2 e - Cu (s) = 0.34 V 1840
The overall reaction is stripped down to the two half- equations: 1841
The overall reaction is stripped down to the two half- equations: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) 1842
The overall reaction is stripped down to the two half- equations: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) Cu 2+ (aq) + 2 e - Cu (s) = 0.34 V 1843
The overall reaction is stripped down to the two half- equations: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) Cu 2+ (aq) + 2 e - Cu (s) = 0.34 V Zn (s) Zn 2+ (aq) + 2 e - = 0.76 V 1844
The overall reaction is stripped down to the two half- equations: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) Cu 2+ (aq) + 2 e - Cu (s) = 0.34 V Zn (s) Zn 2+ (aq) + 2 e - = 0.76 V Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) = 1.10 V 1845
The overall reaction is stripped down to the two half- equations: Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) Cu 2+ (aq) + 2 e - Cu (s) = 0.34 V Zn (s) Zn 2+ (aq) + 2 e - = 0.76 V Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) = 1.10 V This is the simplest approach to calculate values, and the approach I recommend using. 1846
There is an alternative approach, that is based on the formula: where and are the values for the cathode and anode reactions, pulled directly from a standard table of reduction potentials. 1847
There is an alternative approach, that is based on the formula: where and are the values for the cathode and anode reactions, pulled directly from a standard table of reduction potentials. The reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) has the two half-cell reactions: 1848
There is an alternative approach, that is based on the formula: where and are the values for the cathode and anode reactions, pulled directly from a standard table of reduction potentials. The reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) has the two half-cell reactions: anode: Zn (s) Zn 2+ (aq) + 2 e
There is an alternative approach, that is based on the formula: where and are the values for the cathode and anode reactions, pulled directly from a standard table of reduction potentials. The reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) has the two half-cell reactions: anode: Zn (s) Zn 2+ (aq) + 2 e - cathode: Cu 2+ (aq) + 2 e - Cu (s) 1850
There is an alternative approach, that is based on the formula: where and are the values for the cathode and anode reactions, pulled directly from a standard table of reduction potentials. The reaction Cu 2+ (aq) + Zn (s) Zn 2+ (aq) + Cu (s) has the two half-cell reactions: anode: Zn (s) Zn 2+ (aq) + 2 e - cathode: Cu 2+ (aq) + 2 e - Cu (s) Therefore 0.34 V – (–0.76 V) = 1.10 V 1851
A large number of mistakes are made when using this approach. The most common one is that the reaction involving Zn is an oxidation, so students reverse the sign of the value in the table for the Zn half-reaction, but retain the minus sign in the formula, thereby getting the wrong answer of V. 1852
Spontaneity of Redox Reactions 1853
Spontaneity of Redox Reactions Under standard state conditions, a redox reaction is spontaneous in the forward direction if the standard emf of the cell is positive. 1854
Spontaneity of Redox Reactions Under standard state conditions, a redox reaction is spontaneous in the forward direction if the standard emf of the cell is positive. The more positive the value, the greater the tendency for the substance to be reduced. For example, F 2(g) + 2 e - 2 F - (aq) = 2.87 V, is one of the largest values, 1855
Spontaneity of Redox Reactions Under standard state conditions, a redox reaction is spontaneous in the forward direction if the standard emf of the cell is positive. The more positive the value, the greater the tendency for the substance to be reduced. For example, F 2(g) + 2 e - 2 F - (aq) = 2.87 V, is one of the largest values, which makes F 2 one of the strongest oxidizing agents available. 1856
Li + (aq) + e - Li = V 1857
Li + (aq) + e - Li = V This reaction has the one of the most negative values, making Li + one of the weakest oxidizing agents. 1858
Li + (aq) + e - Li = V This reaction has the one of the most negative values, making Li + one of the weakest oxidizing agents. If we reverse the reaction: Li Li + (aq) + e - = 3.05 V 1859
Li + (aq) + e - Li = V This reaction has the one of the most negative values, making Li + one of the weakest oxidizing agents. If we reverse the reaction: Li Li + (aq) + e - = 3.05 V Li is one of the strongest reducing agents available. 1860