Halogen Chemistry in the troposphere EAS 6410 Xiaolu Zhang, Bo Yao, Jin Liao.

Slides:



Advertisements
Similar presentations
Emissions From The Oceans To The Atmosphere Deposition From The Atmosphere To The Oceans And The Interactions Between Them Tim Jickells Laboratory for.
Advertisements

Halogen Oxides in the Troposphere
11 Halogens in the Troposphere AOSC 637 Atmospheric Chemistry Russell R. Dickerson Finlayson-Pitts Chapt. 4,6 Seinfeld Chapt. 6 OUTLINE History & Importance.
Chapter 12 Alkanes 12.4 Haloalkanes.
3 Dec 2004IUP Heidelberg Reading Group Air-Snow Interactions and Atmospheric Chemistry Florent Domine and Paul B. Shepson, Science, 297, 1506 (2002). Reviewed.
METO 621 CHEM Lesson 2. The Stratosphere We will now consider the chemistry of the troposphere and stratosphere. There are two reasons why we can separate.
Climate Change.
METO 637 LESSON 7. Catalytic Cycles Bates and Nicolet suggested the following set of reactions: OH + O 3 → HO 2 + O 2 HO 2 + O → OH + O 2 net reaction.
METO 637 Lesson 15. Polar meteorology In the winter months the poles are in perpetual darkness. This causes extremely cold temperatures in the stratosphere.
METO 621 Lesson 21. The Stratosphere We will now consider the chemistry of the troposphere and stratosphere. There are two reasons why we can separate.
METO 637 Lesson 8. Perturbations of the stratosphere Testing our knowledge of the stratosphere comes from a comparison of the measured and predicted concentrations.
METO 621 Lesson 24. The Troposphere In the Stratosphere we had high energy photons so that oxygen atoms and ozone dominated the chemistry. In the troposphere.
METO 621 Lesson 22. Summary of Homogeneous Chemistry.
METO 637 Lesson 13. Air Pollution The Troposphere In the Stratosphere we had high energy photons so that oxygen atoms and ozone dominated the chemistry.
SETTING THE STAGE FOR: BIOSPHERE, CHEMISTRY, CLIMATE INTERACTIONS.
METO 637 Lesson 16.
METO 737 Lesson 9. Fluorinated Hydrocarbons Developed in 1930 by the General Motors Research laboratories in seqrch for a non-toxic, non-inflammable,
This Week—Tropospheric Chemistry READING: Chapter 11 of text Tropospheric Chemistry Data Set Analysis.
Aerosols and climate Rob Wood, Atmospheric Sciences.
STRATOSPHERIC CHEMISTRY. TOPICS FOR TODAY 1.Review of stratospheric chemistry 2.Recent trends in stratospheric ozone and forcing 3.How will stratospheric.
CHAPMAN MECHANISM FOR STRATOSPHERIC OZONE (1930) O O 3 O2O2 slow fast Odd oxygen family [O x ] = [O 3 ] + [O] R2 R3 R4 R1.
Chemical composition of aerosols Composition of tropospheric aerosols is not uniform. It varies with particle size and source of particles: Ultrafine particles.
An Overview Of Arctic Haze And Surface Ozone Depletion At Polar Sunrise Leonard A. Barrie Pacific Northwest National Laboratory
Simple Chemical modeling of ozone sensitivity
Chapter 15 Air Pollution and Stratospheric Ozone Depletion.
QUESTIONS 1.Is the rate of reaction of S(IV) more likely to be slower than calculated for a cloud droplet or a rain droplet? Why? 2.If you wanted to determine.
Climate Changes and Anthropogenic Influences ATM 100.
QUESTIONS 1.Based on the major source of OH described last class where do you expect OH formation to be high? 2.Why don’t reactions of hydrocarbons deplete.
Chemistry of polar ice (part II) S & N cycles from ice core studies Robert DELMAS.
24 Global Ecology. Figure 24.2 A Record of Coral Reef Decline.
Atmosphere Review Composition of air Nitrogen (78%) Oxygen (21%)
Biosphere/Atmosphere Interactions in the Tropics.
Ozone (O3) in the Atmosphere
Atmospheric Composition & Air Quality (MAQ-34806) Lecturers: Maarten Krol Wouter Peters.
24 Global Ecology. Global Biogeochemical Cycles Atmospheric CO 2 affects pH of the oceans by diffusing in and forming carbonic acid.
1974 Sherwood Rowland & Mario Molina Calculated that CFCs were lowering the average concentration of Ozone in the stratosphere. Chemical Time Bomb: Spray.
TROPOSPHERIC OZONE AND OXIDANT CHEMISTRY Troposphere Stratosphere: 90% of total The many faces of atmospheric ozone: In stratosphere: UV shield In middle/upper.
The GEOS-CHEM Simulation of Trace Gases over China Li ZHANG and Hong LIAO Institute of Atmospheric Physics Chinese Academy of Sciences April 24, 2008.
Gas and Aerosol Partitioning Over the Equatorial Pacific Wenxian Zhang April 21, 2009.
Wildland Fire Impacts on Surface Ozone Concentrations Literature Review of the Science State-of-Art Ned Nikolov, Ph.D. Rocky Mountain Center USDA FS Rocky.
4/20/2006Ga Tech - EAS Air Chemistry Group Presentation 1 A Hydrogen Economy’s Potential Environmental Impacts Chun Zhao Evan Cobb.
Recent Trend of Stratospheric Water Vapor and Its Impacts Steve Rieck, Ning Shen, Gill-Ran Jeong EAS 6410 Team Project Apr
Model Simulation of tropospheric BrO Xin Yang, J. Pyle and R. Cox Center for Atmospheric Science University of Cambridge 7-9 Oct Frascati, Italy.
QUESTIONS 1. How does the thinning of the stratospheric ozone layer affect the source of OH in the troposphere? 2. Chemical production of ozone in the.
Iodine Chemistry And It’s Role In Ozone Depletion PRESENTED BY: Farhana Yasmin.
1 On the relationship between nitryl chloride (ClNO 2 ) and molecular chlorine (Cl 2 ) in coastal California Joel Thornton and Theran Riedel Department.
Damaging the Ozone Layer
Use of GMI to Study Tropospheric and Stratospheric Bromine Budgets Debra Weisenstein AER, Inc. GMI Science Team Meeting March 2008.
2006 Graduate Student Symposium Measurement of HCl (g) in troposphere and lower stratosphere with CIMS technique Analytical characteristics and its implications.
Climatic implications of changes in O 3 Loretta J. Mickley, Daniel J. Jacob Harvard University David Rind Goddard Institute for Space Studies How well.
2007 INTEX Data Meeting The Vertical Distribution of HCl over the Pacific during INTEX-B Saewung Kim, Bob Stickel, Greg Huey, Melody Avery, Jack Dibb,
AN ATMOSPHERIC CHEMIST’S VIEW OF THE WORLD FiresLand biosphere Human activity Lightning Ocean physics chemistry biology.
METO 621 CHEM Lesson 4. Total Ozone Field March 11, 1990 Nimbus 7 TOMS (Hudson et al., 2003)
Effect of BrO Mixing Height to Ozone Depletion Events Sunny Choi.
Marine biogenic emissions, sulfate formation, and climate: Constraints from oxygen isotopes Becky Alexander Harvard University Department of Earth and.
OZONE DEPLETION AT POLAR SUNRISE SOURCES AND MECHANISM OF REACTIVE HALOGEN SPECIES EAS6410 Jide & Rita.
Nitrous Oxide Focus Group Nitrous Oxide Focus Group launch event Friday February 22 nd, 2008 Dr Jan Kaiser Dr Parvadha Suntharalingam The stratospheric.
OsloCTM2  3D global chemical transport model  Standard tropospheric chemistry/stratospheric chemistry or both. Gas phase chemistry + essential heteorogenous.
Atmospheric Chemistry of the Ozone Layer. Levels of Atmospheric Ozone have been Dropping NASA -
Chapter 26 Ozone Depletion. Ozone A form of oxygen in which three atoms of oxygen occur together. Chemically active and has a short average lifetime in.
Interaction between sulfur and reactive bromine in clouds
ATS 621 Fall 2012 Lecture 11.
Air Pollution and Stratospheric Ozone Depletion
ATS 621 Fall 2012 Lecture 10.
大气圈地球化学及其环境效益.
Air Pollution and Stratospheric Ozone Depletion
Air Pollution and Stratospheric Ozone Depletion
Air Pollution and Stratospheric Ozone Depletion
New Developments in Heterogeneous Aerosol Processes Affecting NOx and SO2 Randall Martin.
Determination of uptake coefficients ClO radicals with surfaces of sea
Presentation transcript:

Halogen Chemistry in the troposphere EAS 6410 Xiaolu Zhang, Bo Yao, Jin Liao

Introduction Halogens: very reactive radicals Tropospheric Halogens Influence the oxidation power of the atmosphere Direct way: O 3, OH, NOx ( NO + NO 2 ) Indirect way: Cl + RH ( e.g. CH 4 ) Play an important role in stratosphere chemistry CFCsOzone depletion (Molina and Rowland, 1974) Cl, ClO Why important

Main reaction mechanisms Formation of halogen radicals O 3 + X Salt deposits / Sea salt aerosol XO + hvX + O 3 Photolysis of 1) dihalogens (X 2 or XY) 2) inorganic species ( HOX, XONO 2, XNO 2 ) 3) organic halogen precursors XO + O2 Heterogeneous processes No O 3 depletion

O 3 destruction paths Main reaction mechanisms O 3 + XXO + O 2 XO + HO 2 HOX + O 2 HOX + hvX + OH OH + CO, O 3 or VOCHO 2 + products → Net reaction : 2O 3 → 3O 2

O 3 destruction paths Halogen oxide cross reactions → X + O3 → XO + O2 → XO + YO → X + Y + O2 → Y + O3 → YO + O2 Main reaction mechanisms → Net reaction : 2O 3 → 3O 2 BrO + ClO 4 times faster than BrO + BrO ( X, Y = Cl, Br, I )

Sinks of Halogens Main reaction mechanisms Reactions with RH → Cl + RH → HCl + R XO + NOx HOX + HNO 3 hv H2OH2O Reactions with NOx → XO + NO 2 → XONO 2 → XO + NO → XONO (Deposition)

Additional sources precipitation ~0.01% Stratosphere Troposphere Up to hundreds Tg of HCl Large Eruption Volcanoes

Sources of reactive halogens Industry and fossil fuel burning Fossil fuel burning: 4.6 Tg (Cl) a -1 in 1990 Industrial CHCl 3 : 62 Gg (Cl) a -1 (Aucott et al, 1999) Swimming pools and cooling towers: ~1 Tg (Cl) a -1 Pulp and paper manufacturing Water treatment

Sources of reactive halogens Biomass Burning and dust plumes CH 3 OH + HClCH 3 Cl + H 2 O Inefficient combustion: Global production in the late 1990sCH 3 Cl 450 Gg (Cl) a -1 CH 3 Br 24 Gg (Br) a -1 CH 3 I 12 Gg (I) a -1 Dust as an important reactive surface ( Andreae & Merlet, 2001) 25% 20% Biomass burning --- a source of Methylhalides

Sources of reactive halogens Ocean ConcentrationLifetime CH 3 Cl~ 630 ppt~ 1yr CH 2 Cl 2 ~ 32 ppt83 days CH 3 Br ppt1 - 2 yrs CHBr 3 Days CH 3 I ppt3 - 4 days CH 2 I 2 up to 1 ppt5 min CH 2 ClIup to 1 ppt10 h CH 2 BrIup to 1 ppt45 min Main Sources Organohalogen compound Terrestrial plants Fungi Biomass burning Anthropogenic emissions

Marine Boundary Layer MBL: the lowest, 500-1,000m deep part of the troposphere that is in direct contact with the sea surface Separated from the free troposphere by a temperature and humidity inversion and is generally well mixed Halogens are very abundant in the form of sea salt aerosols which contain chloride and bromide

1. Sea salt aerosol Produced at the sea surface by the bursting of air bubbles Bubble bursting produces small droplets from the film of the air bubbles as well as large jet droplets. Even larger spray droplets are produced by strong winds blowing over wind crests. Global flux of sea salt: 1500Tg/year Tg/year

1. Sea salt aerosol Figure 10: Four stages in the production of sea salt aerosol by the bubble-burst mechanism. (a) A bubble rises to the ocean surface thereby forming a thin film at the interface which begins to thin. (b) Flow of water down the sides of the cavity further thins the film which eventually ruptures into many small sea spray particles. (c) An unstable jet, produced from water flowing down the sides of the cavity, releases a few large sea spray drops. (d) Tiny salt particles remain airborne as drops evaporate; a new bubble is formed. Note the scale change between Figures (a) to (c) and Figure (d) (after Pruppacher and Klett (1997)).

1. Sea salt aerosol ionCl - Na + Mg 2+ SO 4 2- K+K+ Ca 2+ HCO 3 - Br - I-I- Conc.(mmol/l) Ionic composition of sea water pH of ocean surface water is around 8.2, buffered by HCO3 - Uptake of acids from the gas phase leads to acidification of the particles. Keene and Savoie(1998,1999): pH values for moderately polluted conditions at Bermuda were in mid-3s to mid-4s

1. Sea salt aerosol Major differences between reactions on sea salt aerosol and in free troposphere: Acidity Semi-liquid layer on the surface

2. Reactive chlorine Reactive chlorine in the MBL is important for its roles in the acidity budget (HCl), the aqueous phase oxidation of S(IV) by HOCl, and the oxidation of organics and DMS by the chlorine atom.

2. Reactive chlorine Many sea salt aerosol composition measurements found chlorine deficits main reason: the release of HCl from sea salt aerosol by acid displacement:

2. Reactive chlorine “Hydrocarbon clock” method for estimating Cl concentrations: by measuring changes in hydrocarbon relative abundances, the concentration of the Cl radical can be determined. Wingenter et al. (1996): 3.3*10 4 atoms/cm 3, 6.5*10 4 atoms/cm 3

3. Reactive bromine Many field measurements show not only a depletion of Cl - in aged sea salt but often even more so of Br - On average at least 50% of the bromide is lost in the sampled aerosols. The effective solubility for bromide is about 600 times greater than for chloride (Brimblecombe and Clegg, 1989) so that HBr, unlike HCl, is not affected by acid displacement. Therefore, other mechanisms that involve photochemical processes are the reason for a release of bromine from the aerosol.

3. Reactive bromine

When sufficient Br - is available:

4. Reactive iodine In sea water, iodide concentration is very low compared to chloride and bromide. In sear salt aerosol, Cl and Br are usually depleted whereas I is strongly enriched times in rain compared to sear water -> a major additional iodine source Biogenic?Anthropogenic?

4. Reactive iodine Main source of iodine in the MBL: emission of biogenic alkyl iodides like CH 3 I, C 3 H 7 I, CH 2 Cl I or CH 2 I 2 and inorganic iodine like I 2 by various types of macro- algae and phytoplankton that live in the upper ocean and in tidal areas along the coast. Other sources

5. Halogen – sulfur interactions DMS and halogen S(IV) and halogen

5. Halogen – sulfur interactions

Ozone Depletion Event in Polar Region Low surface ozone level (below 10ppb,even reach zero value) in Arctic region in late winter/early spring were measured by ( 1)Oltmans(1981) at Barrow, Alaska. (2) Bottenheim(1986) at Alert, North Canada. Discovery Why? (Possible reason) 1.Polar Meterology: Stable, Stratified in vertical Prevent downward ozone from stratosphere 2.Less VOCs, NOx pollutants 3. Active halogen catalyzed ozone destruction chain.

Why ODEs event happen? BrO and ozone time series measured at Ny AAlesund,Spitsbergen during ARCTOC96 by Tuckermann et al. (1997) /doas/scia_data_browser.htm SCIAMACHY

Meteorological analyses show that ODEs only occurred, when air masses have been in contact with the Arctic Ocean surface (Worthy et al. (1994)) Bottenheim et al. (2002b) Transport: advection of an airmass in which O3 depletion had already occurred. Heterogenous reaction

Major Chemcial mechanism of polar ODEs XO XXY HOX XNO2 N2O5HNO3 XONO2 NO2 XO,YO,NO O3 Gas phase Aqueous phase HO2 hv NO2 hv H2O X-X- XY(aq) HOX(aq) X-,Y-,H+ hv

Sources of active bromine Less than One-year-old Sea ice Frost Flower N2O5 and sea Salt NaBr When frozen halide concentrated on the surface When melt, lowered freezing Point, greater density Large surface areas Potential frost flower Area ( PFF) region Lead to regions with enhanced BrO Do not need acidity during the reaction. Due to low NOx Concentration, It is not an important source

The different roles of Bromine and Chlorine in Polar ODEs Time series of O3, Br2, BrCl, and global irradiance at Alert for 10 – 11March Spicer et al.(2002) 1.In the ARCTOC 1996 campaign, the time integrated concentration of Cl was a thousand times smaller than that of Br.(Ramacher et al.1999) 2.Ozone loss by ClO-BrO catalysis is much smaller than by the BrO-BrO. (Jobson et al 1994)

The different roles of Bromine and Chlorine in Polar ODEs Iodine plays a more important role in ODEs in marine Boundary layer. 3.Fickert et al. (1999) find: The yield of Br2 and BrCl was found to depend on the Cl− to Br− ratio

Halogen chemistry in Salt lake 1.Measurement of high BrO concentration at a site downwind of Dead sea area. Hebestreit et al (1999),BrO up to 90pmol/mol Matveev et al.(2001),BrO up to 200pmol/mol 2. Stutz et al.(2002) in 2000 detected ClO 5~15pmol/mol at the Great Salt Lake in Utah.(Br-/Cl- is only ) 3.In summer 2001 Zingler and Platt(2005) identified IO mixing ratio 0.5~6pmol/mol in the Dead Sea Basin. (Possible Oxidizing bacteria produce idoine)

BrO, O3 and NO2 levels at the Dead Sea southern site, 5 August 2001.(Tas et al.,2005) Chemical mechanism Matveev et al.(2001) Concluded: bromine release from salt deposit, autocatalytic reaction HOBr(aq)+ H + +Br- Br2(aq) + H2O Salt lake gas and aerosol Phase cycling are similar to Polar region

Conclusion 1.Halogen activation from aqueous phase to gas phase plays a critical role in Ozone depletion in polar region. 2. ODEs in polar region will probably increase.