Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS): next planned mission of the NASA Tropospheric Chemistry Program.

Slides:



Advertisements
Similar presentations
Improving the View of Air Quality from Space Jim Crawford Science Directorate NASA Langley.
Advertisements

Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) next planned mission of the NASA Tropospheric Chemistry Program.
Collaborative Investigation of Climate Cryosphere Interaction 3 (CICCI 3) Rune Storvold, Norut/NTNU NySMAC, Helsinki, April 7 th -8 th, 2014.
In Cooperation with the IAMAS Commission on Atmospheric Chemistry and Global Pollution (CACGP) The International Global Atmospheric Chemistry Project A.
Investigate possible causes Intercontinental Transport and Chemical Transformation (ITCT) An International Global Atmospheric Chemistry (IGAC) Program.
CO budget and variability over the U.S. using the WRF-Chem regional model Anne Boynard, Gabriele Pfister, David Edwards National Center for Atmospheric.
ARC-IONS Workshop, U of T – 7-8/01/ ARC-IONS - First results from a North American Strategic Network David W. Tarasick Experimental Studies, Air.
LONG-RANGE TRANSPORT OF BLACK CARBON TO THE ARCTIC REGION Qinbin Li 1, Daven Henze 2, Yang Chen 1, Evan Lyons 3, Jim Randerson 3 work supported by JPL/NASA.
Transpacific transport of pollution as seen from space Funding: NASA, EPA, EPRI Daniel J. Jacob, Rokjin J. Park, Becky Alexander, T. Duncan Fairlie, Arlene.
TRACKS-COPS Focus Convective trace gas and aerosol transport Objectives Transport Processes (and Precipitation Formation) in Convective Systems Influence.
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
Long-range Transport of Asian Pollution to North America: Transport, chemistry and variability Qing Liang and Lyatt Jaeglé University of Washington, Seattle.
GEOS-CHEM GLOBAL 3-D MODEL OF TROPOSPHERIC CHEMISTRY Assimilated NASA/DAO meteorological observations for o x1 o to 4 o x5 o horizontal resolution,
An Overview Of Arctic Haze And Surface Ozone Depletion At Polar Sunrise Leonard A. Barrie Pacific Northwest National Laboratory
ATMOSPHERIC CHEMISTRY: FROM AIR POLLUTION TO GLOBAL CHANGE AND BACK Daniel J. Jacob.
Impact of Mexico City on Regional Air Quality Louisa Emmons Jean-François Lamarque NCAR/ACD.
NASA/GTE MISSIONS, TRAnsport and Chemical Evolution over the Pacific (TRACE-P) A two-aircraft GTE mission over the western Pacific in February-April.
Satellite Products for Arctic Science Jeff Key NOAA/NESDIS, Madison, Wisconsin USA NOAA-EC UAS Arctic Scoping Workshop, September 2012, Boulder Objective:
Retrieval of snow physical parameters with consideration of underlying vegetation Teruo Aoki (Meteorological Research Institute), Masahiro Hori (JAXA/EORC)
Perspective on previous TCP activities (1983- present) H. B. Singh, NASA Ames Research Center GOAL: Measure, understand, and model composition & chemistry.
Penn State Colloquium 1/18/07 Atmospheric Physics at UMBC physics.umbc.edu Offering M.S. and Ph.D.
NASA DC-8 Platform Update University of North Dakota and NASA Airborne Science
OVERVIEW OF ARCTAS AND SCIENTIFIC OBJECTIVES Daniel J. Jacob, Harvard University.
EOS CHEM. EOS CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
10th Anniversary Conference of the M-55 Geophysica POLARCAT Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry,
EOS CHEM. EOS-CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
Improved representation of boreal fire emissions for the ICARTT period S. Turquety, D. J. Jacob, J. A. Logan, R. M. Yevich, R. C. Hudman, F. Y. Leung,
FLIGHT PLANNING IN INTEX-A The DC-8 at MidAmerica airport.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
Randall Martin Space-based Constraints on Emissions of Nitrogen Oxides With contributions from: Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory)
WESTERN AFRICA MISSION (WAM): GTE/AURA Collaborative Science Planning Committee: D.J. Jacob, E.V. Browell, W.H. Brune, J.H. Crawford, J.A. Logan, H.B.
Studies of Emissions & Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC 4 RS) Brian Toon Department of Atmospheric and Oceanic.
NASA DC-8 Platform Update University of North Dakota and NASA Airborne Science
Intercontinental and Hemispheric Scale Transport and the LRTAP Convention Terry J. Keating, Ph.D. Office of Air and Radiation U.S. Environmental Protection.
ARCTAS preliminary report to HQ ESD visitors at Ames Fri 12 Sep 2008 Phil Russell, NASA Ames with contributions from many, many leaders, experimenters,
Report available from Workshop held in Washington, DC, April 27-29, 2005 Daniel J. Jacob (chair),
The effect of pyro-convective fires on the global troposphere: comparison of TOMCAT modelled fields with observations from ICARTT Sarah Monks Outline:
© Crown copyright Met Office The Role of Research Aircraft in YOPP Chawn Harlow, YOPP Summit, WMO, Geneva 13 July 2015.
Why is the photochemistry in Arctic spring so unique? Jingqiu Mao.
NASA P-3B in ARCTAS: Science Goals, Payload and Flight Plans Platform Scientist : Phil Russell Instrument PIs: John Barrick, Anthony Bucholtz, Antony Clarke,
Overview of NOAA’s Arctic Climate Science Activities Current or Proposed Activities Expected to Persist in FY
A NASA / NSF / NRL airborne field campaign focusing on atmospheric composition, chemistry, and climate over Southeast Asia. Programmatic Context, Issues.
An Overview of the INTEX-B Science Campaign H. B. Singh, NASA Ames Research Center  INTEX-B/MILAGRO: Spring 2006  maximum Asian inflow to NA  Mexico.
Model Simulation of tropospheric BrO Xin Yang, J. Pyle and R. Cox Center for Atmospheric Science University of Cambridge 7-9 Oct Frascati, Italy.
CARB Board Meeting San Diego, 23 July 2009 DAVID PARRISH Chemical Sciences Division Earth System Research.
SEAC4RS Payload Payload Synergies Synergies. Complementarity between aircraft can be considered to fall into three categories. Each has considerations.
REGIONAL/GLOBAL INTERACTIONS IN ATMOSPHERIC CHEMISTRY Greenhouse gases Halocarbons Ozone Aerosols Acids Nutrients Toxics SOURCE CONTINENT REGIONAL ISSUES:
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
MACC-II analyses and forecasts of atmospheric composition and European air quality: a synthesis of observations and models Richard Engelen & the MACC-II.
Using CO observations from space to track long-range transport of pollution Daniel J. Jacob with Patrick Kim, Peter Zoogman, Helen Wang and funding from.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
CHARGE QUESTIONS: ENDPOINTS  anthropogenic emissions   air pollution   climate OK, but can we be more specific?  Intercontinental transport of.
Chemical Data Assimilation: Aerosols - Data Sources, availability and needs Raymond Hoff Physics Department/JCET UMBC.
Breakout Session 1 Air Quality Jack Fishman, Randy Kawa August 18.
Chuck Brock NOAA Earth System Research Lab, Chemical Sciences Division Arctic Air Pollution: Observational Advances and Needs (focus on aerosols) photo.
March 29 – April 1, INTEX-NA Workshop Aerosol and Cloud Spatial Distributions and Microphysical Properties Bruce Anderson, Lee Thornhill, Gao.
THE NASA/GTE/TRACE-P AIRCRAFT MISSION 26 February – 10 April 2001 MISSION OBJECTIVES to determine the chemical composition of the Asian outflow over the.
Convective Transport of Carbon Monoxide: An intercomparison of remote sensing observations and cloud-modeling simulations 1. Introduction The pollution.
FIVE CHALLENGES IN ATMOSPHERIC COMPOSITION RESEARCH 1.Exploit satellite and other “top-down” atmospheric composition data to quantify emissions and export.
WESTERN AFRICA MISSION (WAM): An AURA Collaborative Science Mission Planning Committee: D.J. Jacob, E.V. Browell, W.H. Brune, J.H. Crawford, J.A. Logan,
INTERCONTINENTAL TRANSPORT EXPERIMENT – NORTH AMERICA (INTEX-NA)
Use of Near-Real-Time Data for the Global System
Daniel J. Jacob, Harvard University ARCTAS Mission Scientist
DLR POLARCAT Spring/Summer Experiment 2008
Daniel J. Jacob with Tzung-May Fu1, Jun Wang2, Easan E. Drury3
INTERCONTINENTAL TRANSPORT EXPERIMENT – NORTH AMERICA (INTEX-NA)
Daniel J. Jacob Harvard University
ICARTT: COORDINATED ATMOSPHERIC CHEMISTRY CAMPAIGN OVER EASTERN NORTH AMERICA AND NORTH ATLANTIC IN SUMMER 2004 International, multi-agency collaboration.
During April 2008, as part of the International Polar Year (IPY), NOAA’s Climate Forcing and Air Quality Programs engaged in an airborne field measurement.
KEY SCIENCE QUESTIONS (TROPOSPHERE AND AIR QUALITY) FOR THE CEOS ATMOSPHERIC COMPOSITION CONSTELLATION Daniel J. Jacob.
Presentation transcript:

Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS): next planned mission of the NASA Tropospheric Chemistry Program ARCTAS to be conducted in spring and summer 2008 (two phases) as part of the POLARCAT program during the International Polar Year (IPY) INTEX-A INTEX-B ARCTAS ARCTAS white paper available: D.J. Jacob (lead), W.H. Brune, B. Cairns, K. Chance, J. H. Crawford, J. E. Dibb,J.C. Gille, R. Kahn, Q. Li, W. McMillan, B. Pierce, L.A. Remer, P.B. Russell, H.B. Singh, C.R. Trepte, J. Worden

URGENT NEED TO BETTER UNDERSTAND ARCTIC ATMOSPHERIC COMPOSITION AND CLIMATE ARCTIC IS A BEACON OF GLOBAL CHANGE Rapid warming over past decades Receptor of mid-latitudes pollution – arctic haze, ozone build-up, accumulation of persistent pollutants Large and increasing influence from boreal forest fires in Siberia and North America POTENTIALLY LARGE RESPONSE Melting of polar ice sheets and permafrost Decrease of snow albedo from soot depostion Efficient UV/Vis absorption by ozone, soot Halogen radical chemistry UNIQUE OPPORTUNITY FOR NASA Large NASA satellite fleet for atmospheric composition and radiation Interagency and international collaboration through POLARCAT Broader synergies enabled by other IPY activities (OASIS for oceans, etc.)

Satellites: CALIPSO, OMI, TES, HIRDLS, MLS, MODIS, AIRS, MISR, MOPITT Aerosol optical depth, properties CO, ozone, BrO, NO 2, HCHO Aircraft: DC-8, J-31, B-200 Detailed in situ chemical and aerosol measurements Remote sensing of ozone, aerosol, surface properties Models: CTMs, GCMs, ESMs Source-receptor relationships for Arctic pollution Effects of boreal forest fires Aerosol radiative forcing Arctic chemistry Data assimilation Diagnostic studies Retrieval algorithm development & validation Correlative information Model error characterization ARCTAS STRATEGY: use aircraft to increase value of satellite data for models of arctic atmospheric composition and climate Two 1-mo deployments: Mar-May and Jun-Jul 2008

ARCTAS Science Theme 1: winter/spring long-range transport of pollution to the Arctic European influence Arctic haze TES 600 hPa CO, March 2006 What are the transport pathways for different pollutants? What are the contributions from different source regions, the source-receptor relationships? What is the interannual variability (e.g., Arctic Oscillation)? Satellite capabilities: CO (TES, AIRS, MOPITT) O 3 (TES, OMI-MLS) aerosol (CALIPSO, MODIS, MISR) Aircraft added value: detailed chemical composition tracers of sources vertical information J. Worden, JPL

ARCTAS Science Theme 2: Boreal forest fires Fire trend over past decade CALIPSO view of fire plume MISR injection height b Siberian fire, July 26, 2006 J. Crawford, LaRC C. Trepte, LaRC R. Kahn, JPL What is the chemical composition & evolution of the fire plumes? What are their aerosol optical properties, how do these evolve? What are the injection heights, what are the implications for transport & chemistry? Satellite capabilities: plume layers (CALIPSO) injection heights (MISR) aerosols (OMI, MODIS, MISR) CO (TES, MLS, AIRS, MOPITT) Aircraft added value: detailed chemical composition aerosol properties pyroconvective outflow

ARCTIC Science Theme 3: Aerosol radiative forcing CALIPSO clouds and smoke Arctic haze MISR true-color fire plume C. Trepte, LaRC R. Kahn, JPL What is the regional radiative forcing from Arctic haze, fire plumes? How does this forcing evolve during plume aging? What are the major sources of soot to the Arctic? What is the effect of deposited soot on ice albedo? Satellite capabilities: UV/Vis/IR reflectances (Cloudsat, OMI, MODIS, MISR) multiangle sensing (MISR) lidar (CALIPSO) Aircraft added value: detailed in situ aerosol characterization remote sensing of radiances, fluxes albedo and BRDF of surface

ARCTAS Science Theme 4: Chemical processes Ozone, Hg depletion events OMI tropospheric BrO TES tropospheric ozone Sprovieri et al. [2005] K. Chance, Harvard/SAO J. Worden, JPL What is the HO x /NO x chemistry in the Arctic? What drives halogen radical chemistry in the Arctic, what is its regional extent? What are the regional implications of halogen chemistry for ozone and mercury? How does stratosphere-troposphere exchange affect tropospheric ozone in the Arctic? Satellite capabilities: Ozone (TES, OMI/MLS) BrO (IOMI) strat-trop exchange (HIRDLS) CO (TES, AIRS, MOPITT) Aircraft added value: detailed chemical characterization, constraints on photochemical models validation of OMI tropospheric BrO HO x measurement intercomparison

AIRCRAFT PLATFORMS, PAYLOADS DC-8: major in situ platform Ceiling 37 kft, range 4000 nmi, endurance 9 h Payload: O 3, H 2 O, CO, CO 2, CH 4, NO x and HO x chemistry, BrO, halogen reservoirs, mercury, NMVOCs, halocarbons, SO 2. HCN/CH 3 CN, actinic fluxes, aerosol mass and number concentrations, aerosol physical and optical properties, remote ozone and aerosol B-200: major CALIPSO validation platform Ceiling 32 kft, range 800 nmi, endurance 3.5 h Payload: High Spectral Resolution Lidar (HSRL) J-31: major aerosol remote sensing platform Ceiling 26 kft, range 800 nmi, endurance 5 h Payload: optical depth, radiative flux, radiance spectra

Anchorage Fairbanks Churchill Winnipeg Kiruna (spring) Iqaluit Thule POTENTIAL ARCTAS BASES AND NOMINAL DC-8 RANGES …also consider a Russian base (Yakutsk?)

DC-8 FLIGHT STRATEGIES Characterization of emissions, surface uptake Process studies: photochemistry plume evolution transport mechanisms Satellite validation Air mass characterization global and regional chemical budgets long-range transport Lidar remote sensing: mapping of pollution plumes satellite validation

J-31 FLIGHT STRATEGIES

MAJOR INTERAGENCY AND INTERNATIONAL PARTNERSHIPS UNDER POLARCAT NSF/OPP+ATM: summer surface chemistry intensive at Summit DOE: aircraft intensive at Alaska ARM site in April 08, focus on aerosol-cloud radiation NOAA (not committed yet): WP-3 based in Iqaluit and R/V Brown cruise to Greenland and Barents Seas, focus on aerosol-cloud interactions and North American export of pollution DLR (likely, not committed yet): Falcon based in NE Canada in summer 08, focus on pyroconvection and cirrus chemistry Canada (pending): three aircraft in summer 07 and 08 based in Yellowknife, focus on pyroconvection.