Copyright COMMONWEALTH OF AUSTRALIA Copyright Regulation WARNING This material has been reproduced and communicated to you by or on behalf of the University.

Slides:



Advertisements
Similar presentations
Section M Nitrogen metabolism
Advertisements

CHAPTER 20 PROTEIN METABOLISM. Nitrogen of Amino Acids nitrogens to be excreted are collected in glutamate which is oxidized to  -ketoglutarate and NH.
Protein Turnover and Amino Acid Catabolism
Detoxification of ammonia and biosynthesis of urea. The basic features of nitrogen metabolism were elucidated initially in pigeons.
Amino acid oxidation and the production of urea
1 LECTURES CATABOLISM OF PROTEINS AND AMINO ACID NITROGEN DR SAMEER FATANI BIOCHEMISTRY (METABOLISM)
Degradation of amino acids Amino acid breakdown can yield: –Acetyl-CoA –  -KG –Succinyl-CoA –OAA –fumarate.
Amino Acids Metabolism: Disposal of Nitrogen.
Amino Acid Catabolism C483 Spring Which of the following is/are true statement(s) about glutamine and alanine? A) They are nitrogen donors in.
By Amr S. Moustafa, MD, PhD Medical Biochemistry Unit, Path. Dept. College of Medicine, King Saud University Urea Cycle.
Catabolism of proteins and amino acids. Reactions in the attachment of ubiquitin to proteins.
Integration of Metabolism. Cellular Locations for Metabolism Citric Acid Cycle, Oxidative Phosphorelation, Fatty Acid Oxidation - Mitochondria Glycolysis.
PROTEIN-Part One NFSC 303 – Nutrition and Fitness McCafferty.
Protein Metabolism. Starvation Amino acids released by proteolysis –Channeled to the liver for gluconeogenesis Although not all amino acids can be made.
Digestion of Proteins 25.7 Degradation of Amino Acids 25.8 Urea Cycle Chapter 25 Metabolic Pathways for Lipids and Amino Acids.
Protein Turnover and Amino Acid Catabolism
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 18 Metabolic.
BIOC 460 DR. TISCHLER LECTURE 38 AMINO ACID DEGRADATION/ UREA CYCLE.
Amino Acids Metabolism Amino Acids Metabolism 2 nd Year Medicine By Eman Mokbel Alissa, Ph.D.
Metabolism II.
Amino Acid Oxidation and the Production of Urea
Pratt and Cornely Chapter 18
Amino Acid Metabolism Lecture 17 Modified from internet sources, books and journals.
Protein Metabolism. generation of metabolic energy A mino acids, through their oxidative degradation, make a significant contribution to the generation.
LIPID METABOLISM – BLOOD LIPIDS
Metabolism of Amino Acid
METABOLISM OF PROTEINS Dr. Gamal Gabr, College of Pharmacy.
Amino acid metabolism · Nitrogen balance protein catabolism, synthesis biosynthesis normal N balance: N ingested = N excreted negative N balance: N ingested.
# 2 Degradation of Amino Acids
Copyright COMMONWEALTH OF AUSTRALIA Copyright Regulation WARNING This material has been reproduced and communicated to you by or on behalf of the University.
Protein Metabolism. Protein Digestion Protein breakdown begins in the stomach. No protein hydrolyzing enzymes are found in saliva. Hydrolysis (10% of.
Amino acid degradation Most of absorbed dietary amino acids are catabolized by 2 subsequent steps: I- Removal of α-amino group: α-amino group is removed.
Amino Acid Metabolism. Intestinalsynthesize apoproteins (for lipoproteins) Epithelia:synthesize digestive enzymes glutamine degradation is a primary source.
Overview of Glucose Metabolism
Chapter 5 Cell Respiration & Metabolism
Chapter 5 Cell Respiration and Metabolism. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metabolism All.
Amino acid oxidation and the production of urea. Catabolism of proteins and aa nitrogen How the nitrogen of aa is converted to urea and the rare disorders.
Biochemistry: A Short Course Second Edition Tymoczko Berg Stryer © 2013 W. H. Freeman and Company CHAPTER 30 Amino Acid Degradation and the Urea Cycle.
Chem 454: Biochemistry II University of Wisconsin-Eau Claire Chem 454: Biochemistry II University of Wisconsin-Eau Claire Protein Turnover and Amino Acid.
BIOC/DENT/PHCY 230 LECTURE 5. glu UREA o synthesised mainly in liver o maintains N in a soluble, non-toxic form o transported in blood to kidney for.
Amino Acids: From Ingestion To Excretion. An introduction to the degradation of proteins into amino acids and the production of urea in the liver.
Amino acid metabolism M.F.Ullah,Ph.D COURSE TITLE: BIOCHEMISTRY 2
Enzymes 2 nd Year Nutrition By Eman Mokbel Alissa, Ph.D.
17.8 Amino Acid Catabolism Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins During starvation proteins.
A m I n o A c I d S M E T A B O L I S M. Free template from 2.
Amino Acid Degradation and Nitrogen Metabolism
Review Beta Oxidation Protein Metabolism 20 aa’s that combine in unique arrangements to form individual proteins.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY Fifth Edition David L. Nelson and Michael M. Cox © 2008 W. H. Freeman and Company CHAPTER 18 Amino Acid Oxidation.
Copyright © 2011, Pearson Education, Inc., publishing as Pearson Benjamin Cummings. Chapter 7 - Metabolism $100 $200 $300 $400 $500 $100$100$100 $200 $300.
Sports Nutrition Lesson 30.
AMINO ACIDS METABOLISM Course: MEDICIMAL CHEMISTRY 1 Course Code: 301.
Metabolism of Amino Acid
The Nitrogen Cycle Nitrite reductase Nitrate reductase nitrogenase.
Amino acids - Classifications, Amino acids Physico – Chemical Properties, Protein structure, folding & function, Nitrogen Cycle Nitrogen Balance, Reductive.
Amino Acid Metabolism CHY2026: General Biochemistry.
Enter in the formation of A.A. pool
Dr. Ghufran Mohammed Hussein
24.6 Degradation of Proteins and Amino Acids
Catabolism of amino acids
بايو كمستري / د . احمد ثاني اسنان موصل 19 / 4 / 2016
24.9 Synthesis of Amino Acids
A m I n o c d S M E T B O L Amino Acid Metabolism.
Amino Acid Metabolism.
MBG304 Biochemistry Lecture 9: Amino acid metabolism
PROTEIN AND AMINO ACID METABOLISM A. A. Osuntoki, Ph.D.
Metabolism II.
1. מעגל האוריאה 1 1.
REVIEW SLIDES.
Nitrogen metabolism Part C:
Alternatives to Glucose
Presentation transcript:

Copyright COMMONWEALTH OF AUSTRALIA Copyright Regulation WARNING This material has been reproduced and communicated to you by or on behalf of the University of Sydney pursuant to Part VB of the Copyright Act 1968 (the Act). The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act. Do not remove this notice

Introduction to Nitrogen Metabolism Only an introduction!

Amino Acids Twenty in proteins –More involved in metabolism –Loads of different side chains –So pathways of formation and disposal varied and complex Synthesis and degradation of proteins –Each under different control –Hard to generalise

Daily Flux Intake 100 g 16 g nitrogen Loss 100 g skin 0.5 g nitrogen urea 16 g nitrogen faeces 2 g nitrogen 10 kg pool 300 g turnover 3% per day Turnover varies massively between tissues: muscle 2%, intestine 15% But muscle is greatest bulk of protein.

Principles Liver important –First place amino acids go from intestine –Conversion of amino acids Especially to glucose –Processing of amine groups Urea synthesis Degradation enzymes have very high Km –Not ‘controlled’ –Only affected by [amino acid] –So excess amino acids degraded

Bits to Process Amino group –Fixed nitrogen is quite precious Recycle if possible –But ammonia is toxic So need to convert to non-toxic product Carbon skeleton –Normally a 2-oxo acid Oxidized or converted to carbohydrate or fat

Transamination Shuffling of amino groups Involves alpha-keto (2-oxo) acids –Main acceptors Pyruvate  alanine 2-oxo glutarate  glutamate Oxaloacetate  aspartate These are involved in other pathways –Glycolysis, Krebs Cycle

Other Key Reactions Glutamate dehydrogenase –Oxidative deamination of glutamate Regenerates 2-oxoglutarate Releases ammonia Glutamine synthesis –Using glutamate and ammonia Glutamine effectively carries two amino groups –Reaction reversible

Essential Amino Acids Can’t be synthesized by us –Sometimes conditional on age/situation Don’t learn them all –But do know which are most definitely NOT essential

Getting a Good Mixture Protein quality –Meat generally very high “Standard” is egg –Pulses low in methionine –Lysine relatively low in grains Protein complementing Protein malnutrition –If you are lacking in one amino acid, you may not be able to make an entire protein –All the other amino acids then ‘in excess’

Amino Acid Fluxes After feeding Portal vein (into liver) –Mixture reflects protein composition –20% branched chain amino acids Leucine, isoleucine, valine Hepatic vein (out of liver) –70% branched chain amino acids Veins from muscle –Branched chain amino acids removed

During Starvation Hypoinsulinemia stimulates proteolysis Muscle releases all amino acids –But large amount of alanine & glutamine These are preferentially taken up by liver –Small amount of branched chain amino acids Where has the alanine come from –From pyruvate transamination Which needs glycolysis from glucose So that’s a bit strange!

Amino acids Cell protein Amino acids 2-oxoacids CO 2 pyruvate alanine glucose2-oxoglutarate glutamate glutamine proteolysis Protein synthesis Export to liver Export to liver oxidation blood glycolysis Can the pyruvate be made from other amino acid skeletons?

Processing Amino Acids During normal turnover –Many amino acids escape re-synthesis Oxidized During starvation –Or other times when there is high proteolysis When diet is rich in protein –Surplus amino acids Issue is always… –How to deal with amine groups –What to do with carbon skeletons

Dealing with amine groups Urea Cycle –Liver only Glutamate is the main substrate –In mitochondria, oxidative deamination Giving 2-oxoglutarate and ammonia –Ammonia quickly ‘fixed’ into carbamoyl phosphate –Glutamate also transaminated to aspartate Carbamoyl Phopshate and aspartate –combine to give urea

General Principle Carrier is ornithine Reacts with carbamoyl phosphate –Giving citrulline Now add –NH 2 from aspartate –Releasing fumarate, a Krebs intermediate Split off urea –Regenerating the ornithine

Urea Non-toxic –Can be present in blood at mM levels –Cleared by kidneys Fish can secrete ammonia –Very dilute! –Ammonia very toxic to us

Processing Skeletons Many different pathways –Each amino acid is different Some feed into Krebs Cycle –Anaplerotic –Can be diverted to gluconeogenesis If transamination reactions in the liver –Or at least gluconeogenic substrates For export from muscle Some can only be made into acetyl CoA –Ketogenic or energy production only

Defects in Processing Both in urea cycle and skeleton breakdown –See textbook for full table (18-2) Notably phenylalanine –First step, conversion to tyrosine, sometimes defective –Build up of phenylalanine and phenylpyruvate –Developmental problems –Screening and dietary therapy Avoid aspartame Difficult to avoid protein

Amino Acid Sythesis Very complex! But all pathways linked to –Glycolysis –Krebs –Pentose Phosphate Pathway Also other nitrogenous products from amino acids –Creatine –Hormones (adrenalin) –nucleotides

Only Important Things Overview of protein fluxes Knowing when amino acids are metabolised What goes in and out of muscle Transaminases Overview of Urea Cycle