PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK,

Slides:



Advertisements
Similar presentations
Physical conditions of the shocked regions in collimated outflows of planetary nebulae Angels Riera (UPC)
Advertisements

John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation.
Stellar Death Astronomy 315 Professor Lee Carkner Lecture 14 “I am glad we do not have to try to kill the stars. … Imagine if a man each day should have.
White Dwarf. Collapse The core of a giant star collapses as helium fuses. –Outer layers continue to expand –Loses over half its mass The lost mass comes.
An ancient nova shell around the dwarf nova Z Camelopardalis Michael M. Shara, et al. 2007, Nature, Vol March 鹿豹星座.
Stellar Evolution.
Star Formation and the Interstellar Medium
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
The Deaths of Stars. What Do You Think? Will the Sun someday cease to shine brightly? If so, how will this occur? What is a nova? How does it differ from.
General Relativistic MHD Simulations of Black Hole Accretion Disks John F. Hawley University of Virginia Presented at the conference on Ultra-relativistic.
From the AGB to the PN phase with the PdBI From the AGB to the PN phase with the Plateau de Bure Interferometer Arancha Castro- Carrizo Jan Martin Winters.
Post Main Sequence Evolution PHYS390 (Astrophysics) Professor Lee Carkner Lecture 15.
Finally, fusion starts, stopping collapse: a star! Star reaches Main Sequence at end of Hayashi Track One cloud ( M Sun ) forms many stars,
Inflating Fat Bubbles in Clusters of Galaxies by Slow Wide Jets Assaf Sternberg (did the work) Noam Soker (speaker today) Technion, Israel July 2008.
The Last Hurrah: pPN Formation by a Magnetic Explosion Sean Matt 1 Adam Frank 2 & Eric Blackman 2 1 McMaster U. ; 2 U. of Rochester August 1, 2003 APN3:
Returning to the Source* MHD Disk Winds, Binaries and Jets as Agents of PN Shaping Adam Frank University of Rochester F. Garcia-Arredondo, E. Blackman.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
Beyond the Textbook: Why Planetary Nebula are the Most Exciting Problem in Astrophysics. Adam Frank University of Rochester.
The formation of stars and planets Day 4, Topic 1: Magnetospheric accretion jets and outflows Lecture by: C.P. Dullemond.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Shock Waves: II. HII Regions + Planetary Nebulae.
Jonathan Slavin Harvard-Smithsonian CfA
The Deaths of Stars Chapter 10. Evolution off the Main Sequence: Expansion into a Red Giant Hydrogen in the core completely converted into He: H burning.
MOLECULAR GAS and DUST at the CENTER of the EGG NEBULA Jeremy Lim and Dinh-V-Trung (Institute of Astronomy & Astrophysics, Academia Sinica, Taiwan) Introduction.
Interacting Winds: Theory Overview Stan Owocki Bartol Research Institute University of Delaware with thanks for web slides from: D. Folini, K. Gayley,
Main Sequence White Dwarfs Red Giants Red Supergiants Increasing Mass, Radius on Main Sequence The Hertzsprung-Russell (H-R) Diagram Sun.
Processes in Protoplanetary Disks
Stellar Winds and Mass Loss Brian Baptista. Summary Observations of mass loss Mass loss parameters for different types of stars Winds colliding with the.
Evolution off the Main Sequence
Outflows and Jets: Theory and Observations Winter term 2006/2007 Henrik Beuther & Christian Fendt Introduction & Overview (H.B. & C.F.) Definitions,
The Challenges of the Last Decade of Observations of PNe Gdansk June, 2005 Bruce Balick University of Washington HST image by Hans Van Winckel, and Martin.
Jonathan Carroll-Nellenback University of Rochester.
Relativistic MHD Simulations of Relativistic Jets with RAISHIN * We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD)
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Evaporation of Clouds in Thermally Conducting, Radiative Supernova Remnants S. Orlando (1),
Survey of the Universe Tom Burbine
Lecture 17 Post-ms evolution II. Review Review Review.
Hee-Won Lee ARCSEC and Dept. of Astronomy Sejong University 2010 August 26.
How Stars Form Shantanu Basu Physics & Astronomy University of Western Ontario Preview Western, May 3/4, 2003.
Excesses of Magnetic Flux and Angular Momentum in Stars National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Моделирование магниторотационных процессов в коллапсирующих сверхновых и развитие Магнито-Дифференциально- Ротационной неустойчивости Сергей Моисеенко,
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
Symbiotic or planetary nebulae? Miguel Santander-García Romano L. M. Corradi Antonio Mampaso Asymmetrical Planetary Nebulae IV, Los Cancajos, La Palma,
Dusty disks in evolved stars?
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
High Resolution Mid-Infrared Imaging of Dusty Circumstellar Structure around Evolved Stars with the MMT Adaptive Optics System B.A. Biller, L.M. Close,
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Comparing Poynting flux dominated magnetic towers with kinetic-energy dominated jets Martín Huarte-Espinosa, Adam Frank and Eric Blackman, U. of Rochester.
Ch. 10 Stellar Old Age.
Progenitor stars of supernovae Poonam Chandra Royal Military College of Canada.
Hydrodynamical Interpretation of Basic Nebular Structures
11/01/2016 Variable Galactic Gamma-Ray Sources, Heidelberg, Germany 1 Maxim Barkov MPI-K, Heidelberg, Germany Space Research Institute, Russia, University.
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
Jet Interactions with the Hot Atmospheres of Clusters & Galaxies B.R. McNamara University of Waterloo Girdwood, Alaska May 23, 2007 L. Birzan, P.E.J. Nulsen,
Studies of Molecular Outflows Hsin-Lun Kuo Department of Physics,NTU Supervisor:Hsien Shang 2002 Summer Students Presentation, ASIAA.
AGN Outflows: Part II Outflow Generation Mechanisms: Models and Observations Leah Simon May 4, 2006.
A New Window on Radio and X-ray emission from Strongly Interacting Supernovae Poonam Chandra Royal Military College of Canada Collaborators: Roger Chevalier,
ASTR112 The Galaxy Lecture 12 Prof. John Hearnshaw 16. Evolution of the Galaxy 16.1 Star formation 16.2 Exchange of material between stars and ISM 16.3.
Universe Tenth Edition Chapter 20 Stellar Evolution: The Deaths of Stars Roger Freedman Robert Geller William Kaufmann III.
Binary Star Formation and Mass Outflows -MHD Nested Grid Simulation - Masahiro N. Machida ( Hokkaido University / National Astronomical Observatory of.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Death of sun-like Massive star death Elemental my dear Watson Novas Neutron Stars Black holes $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400.
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
Star Formation - 6 (Chapter 5 – Universe).
When stars collide: of planetary nebulae, jets and cosmic outbursts
Shule Li, Adam Frank, Eric Blackman
A magnetically collimated jet from an evolved star
Presentation transcript:

PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK,

1. THE TEMPLATE: 2. PIECES OF THE PUZZLE: TALK PLAN THE GENERIC NEBULA...AND SOME EXTRA FLAVOURS INTRODUCTION: 1-D HYDRO 2-D WORLD 3-D WORLD SMALL-SCALE FEATURES MHD

THE TEMPLATE THE GENERIC NEBULA

SPHERICAL HALO ORDERLY RINGS A BIG MESS INSIDE THE GENERIC NEBULA... VERY HOT GAS („HOT CAVITY”)

THE TEMPLATE EXTRA FLAVOURS

SOME EXTRA FLAVOURS HOT CAVITY TADPOLES

SOME EXTRA FLAVOURS WAVES BIPOLAR LOBES

SOME EXTRA FLAVOURS POINT SYMMETRY

SOME EXTRA FLAVOURS MULTIPOLAR OUTFLOWS

SOME EXTRA FLAVOURS FLIERS

SOME EXTRA FLAVOURS ANSAE

JETS DISKS SOME EXTRA FLAVOURS

BRETS BIPOLAR ROTATING EPISODIC JETS

SOME EXTRA FLAVOURS HUBBLE FLOW (v ~ R) BIPOLAR LOBES

PIECES OF THE PUZZLE INTRODUCTION: 1-D HYDRO

INTRODUCTION: 1-D HYDRO forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 FREE WIND 2 FRAME (=AMBIENT MEDIUM FRAME)

free fast wind shocked fast wind free AGB wind shocked AGB wind forward shock reverse shock contact surface INTRODUCTION: 1-D HYDRO

Balick, B. & Frank, A. 2002; ARAA 40, 439..

INTRODUCTION: 1-D HYDRO Balick, B. & Frank, A. 2002; ARAA 40, 439..

INTRODUCTION: 1-D HYDRO RS CS FS

PIECES OF THE PUZZLE 2-D WORLD

2-D WORLD: BASICS  ROTATION BINARY INTERACTIONS MAGNETIC FIELDS Icke V. 1988; A&A 202, 177 FOR SMALL DEPARTURES FROM SPHERICAL SYMMETRY:

reverse shock forward shock contact surface shocked AGB wind free AGB wind shocked fast wind free fast wind 2-D WORLD: BASICS

OBLIQUE SHOCK shocked wind 2 free wind 2 SHOCK FRAME 2-D WORLD: OBLIQUE SHOCKS

2-D WORLD: SHAPING - BIPOLARS Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M  /yr. M fast =10 -7 M  /yr. q = 0.1 v eq v pl V pl / V eq = 3

2-D WORLD: BREAKOUT

2-D WORLD: COLLIMATION, JETS-I Blandford, R. & Rees, M. 1974; MNRAS 169, 395 Norman, M., Smarr, L., Smith, M., & Wilson, J. 1981; ApJ 247, 52

Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I 3 M w = M  /yr V w = 200 km/s adiabatic. RS CS FS

Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I M w = M  /yr V w = 200 km/s adiabatic q = 70.

Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I

2-D WORLD: COLLIMATION, JETS-II

forward shock reverse shock contact surface 2-D WORLD: COLLIMATION, JETS-II  T

PIECES OF THE PUZZLE 3-D WORLD

a = 2.4 AUa = 12.6 AU RG star: M * =1M  ; R * =0.7 AU secondary: M * =0.6 M  RG wind: M  /yr fast wind: M  /yr; 10 3 km/s 3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205

3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205

Courtesy: Doris Folini & Rolf Walder 3-D WORLD: BINARY, DISK FORMATION RW Hya RED GIANT: M=1.6M , R=10 13 cm, M=10 -7 M  /yr WHITE DWARF: M=0.48 M , a=210 13 cm.

3-D WORLD: BINARY, DENSE WIND SHAPING SYMBIOTIC BINARY COOL STAR: M=1.4M , R=10 13 cm, M=310 -8 M  /yr HOT STAR: M=0.6 M , a=310 13 cm, M=410 -9 M  /yr.. HIGH LOW Courtesy: Doris Folini & Rolf Walder

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Movies by Eric Sandquist; red giant: 1 M  with a 0.45 M  core companion: 0.35 M 

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Eric Sandquist;

3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION De Marco, O. Et al. 2003; RevMexAA S.Conf. 18, days170 days 2310 days3250 days AGB star core 0.56 M  envelope 0.69 M  radius 1.85 AU companion mass 0.1 M  timesscale 9 yr mass lost 4 % AGB star core 0.56 M  envelope 0.69 M  radius 1.85 AU companion mass 0.1 M  synchronous timesscale 9 yr mass lost 25 % AGB star core 0.60 M  envelope 0.44 M  radius 3.00 AU companion mass 0.1 M  timesscale 18 yr mass lost 84 %

PIECES OF THE PUZZLE SMALL-SCALE FEATURES

SMALL-SCALE FEATURES: COOLING INSTABILITY  ~T -0.7 Gaetz,T. & Salpeter, E. 1983; ApJS 52, 155

SMALL-SCALE FEATURES: COOLING INSTABILITY; R-T INSTABILITY Movie: courtesy Doris Folini & Rolf Walder

SMALL-SCALE FEATURES: RAYLEIGH-TAYLOR INSTABILITY Movie: courtesy ASC / Alliances Center for Astrophysical Thermonuclear Flashes g lighter fluid denser fluid density schematic: simulation time: 3.1 sec density range: 0.5 – 2.5 g/cm 3

isotropic thermal pressure nonisotropic ram pressureSMALL-SCALE FEATURES: THIN SHELL INSTABILITY I Vishniac, E. 1983; ApJ 274, 152

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY I shocked AGB wind shocked fast wind free AGB wind forward shock

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Vishniac, E. 1994; ApJ 428, 186 nonisotropic ram pressure

SPHERICAL SYMMETRY: IONIZATION INSTABILITIES (?) SPHERICAL SYMMETRY: RAYLEIGH-TAYLOR INSTABILITY AXIAL SYMMETRY: KELVIN-HELMHOLTZ INSTABILITY SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Movie: courtesy Doris Folini & Rolf Walder

SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II John Blondin

SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. & Franco, J. 1996; ApJ 469, p.171

SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M  /yr. M fast =10 -7 M  /yr. F ion =10 46 /s

PIECES OF THE PUZZLE MHD

MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 ( B(2R * ) = 2G )

Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND

Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON MAGNETICALLY DRIVEN WIND M * = 1 M  R * = 4.5 AU spherical wind M w = M  /yr at R * toroidal field of 0.1, 1 or 5 G

MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/ dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed

MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/ dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed

C. Fendt MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD B  v 2 B  v 2

MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD Kuwabara, T. et al. 2005; ApJ 621, 921

MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267

MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267