PROBLEMS IN GASEOUS HYDRODYNAMICS MICHAŁ RÓŻYCZKA NICOLAUS COPERNICUS ASTRONOMICAL CENTER WARSAW, POLAND PLANETARY NEBULAE AS ASTRONOMICAL TOOLS GDAŃSK,
1. THE TEMPLATE: 2. PIECES OF THE PUZZLE: TALK PLAN THE GENERIC NEBULA...AND SOME EXTRA FLAVOURS INTRODUCTION: 1-D HYDRO 2-D WORLD 3-D WORLD SMALL-SCALE FEATURES MHD
THE TEMPLATE THE GENERIC NEBULA
SPHERICAL HALO ORDERLY RINGS A BIG MESS INSIDE THE GENERIC NEBULA... VERY HOT GAS („HOT CAVITY”)
THE TEMPLATE EXTRA FLAVOURS
SOME EXTRA FLAVOURS HOT CAVITY TADPOLES
SOME EXTRA FLAVOURS WAVES BIPOLAR LOBES
SOME EXTRA FLAVOURS POINT SYMMETRY
SOME EXTRA FLAVOURS MULTIPOLAR OUTFLOWS
SOME EXTRA FLAVOURS FLIERS
SOME EXTRA FLAVOURS ANSAE
JETS DISKS SOME EXTRA FLAVOURS
BRETS BIPOLAR ROTATING EPISODIC JETS
SOME EXTRA FLAVOURS HUBBLE FLOW (v ~ R) BIPOLAR LOBES
PIECES OF THE PUZZLE INTRODUCTION: 1-D HYDRO
INTRODUCTION: 1-D HYDRO forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 CONTACT SURFACE FRAME forward shock contact surface reverse shock shocked wind 1 shocked wind 2 free wind 1 free wind 2 FREE WIND 2 FRAME (=AMBIENT MEDIUM FRAME)
free fast wind shocked fast wind free AGB wind shocked AGB wind forward shock reverse shock contact surface INTRODUCTION: 1-D HYDRO
Balick, B. & Frank, A. 2002; ARAA 40, 439..
INTRODUCTION: 1-D HYDRO Balick, B. & Frank, A. 2002; ARAA 40, 439..
INTRODUCTION: 1-D HYDRO RS CS FS
PIECES OF THE PUZZLE 2-D WORLD
2-D WORLD: BASICS ROTATION BINARY INTERACTIONS MAGNETIC FIELDS Icke V. 1988; A&A 202, 177 FOR SMALL DEPARTURES FROM SPHERICAL SYMMETRY:
reverse shock forward shock contact surface shocked AGB wind free AGB wind shocked fast wind free fast wind 2-D WORLD: BASICS
OBLIQUE SHOCK shocked wind 2 free wind 2 SHOCK FRAME 2-D WORLD: OBLIQUE SHOCKS
2-D WORLD: SHAPING - BIPOLARS Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M /yr. M fast =10 -7 M /yr. q = 0.1 v eq v pl V pl / V eq = 3
2-D WORLD: BREAKOUT
2-D WORLD: COLLIMATION, JETS-I Blandford, R. & Rees, M. 1974; MNRAS 169, 395 Norman, M., Smarr, L., Smith, M., & Wilson, J. 1981; ApJ 247, 52
Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I 3 M w = M /yr V w = 200 km/s adiabatic. RS CS FS
Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I M w = M /yr V w = 200 km/s adiabatic q = 70.
Frank, A. & Mellema, G. 1996; ApJ 472, D WORLD: COLLIMATION, JETS-I
2-D WORLD: COLLIMATION, JETS-II
forward shock reverse shock contact surface 2-D WORLD: COLLIMATION, JETS-II T
PIECES OF THE PUZZLE 3-D WORLD
a = 2.4 AUa = 12.6 AU RG star: M * =1M ; R * =0.7 AU secondary: M * =0.6 M RG wind: M /yr fast wind: M /yr; 10 3 km/s 3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205
3-D WORLD: BINARY, DENSE WIND SHAPING Gawryszczak, A., Mikołajewska, J. & Różyczka, M. 2002; A&A 385, 205
Courtesy: Doris Folini & Rolf Walder 3-D WORLD: BINARY, DISK FORMATION RW Hya RED GIANT: M=1.6M , R=10 13 cm, M=10 -7 M /yr WHITE DWARF: M=0.48 M , a=210 13 cm.
3-D WORLD: BINARY, DENSE WIND SHAPING SYMBIOTIC BINARY COOL STAR: M=1.4M , R=10 13 cm, M=310 -8 M /yr HOT STAR: M=0.6 M , a=310 13 cm, M=410 -9 M /yr.. HIGH LOW Courtesy: Doris Folini & Rolf Walder
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Movies by Eric Sandquist; red giant: 1 M with a 0.45 M core companion: 0.35 M
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION Eric Sandquist;
3-D WORLD: BINARY, COMMON ENVELOPE EVOLUTION De Marco, O. Et al. 2003; RevMexAA S.Conf. 18, days170 days 2310 days3250 days AGB star core 0.56 M envelope 0.69 M radius 1.85 AU companion mass 0.1 M timesscale 9 yr mass lost 4 % AGB star core 0.56 M envelope 0.69 M radius 1.85 AU companion mass 0.1 M synchronous timesscale 9 yr mass lost 25 % AGB star core 0.60 M envelope 0.44 M radius 3.00 AU companion mass 0.1 M timesscale 18 yr mass lost 84 %
PIECES OF THE PUZZLE SMALL-SCALE FEATURES
SMALL-SCALE FEATURES: COOLING INSTABILITY ~T -0.7 Gaetz,T. & Salpeter, E. 1983; ApJS 52, 155
SMALL-SCALE FEATURES: COOLING INSTABILITY; R-T INSTABILITY Movie: courtesy Doris Folini & Rolf Walder
SMALL-SCALE FEATURES: RAYLEIGH-TAYLOR INSTABILITY Movie: courtesy ASC / Alliances Center for Astrophysical Thermonuclear Flashes g lighter fluid denser fluid density schematic: simulation time: 3.1 sec density range: 0.5 – 2.5 g/cm 3
isotropic thermal pressure nonisotropic ram pressureSMALL-SCALE FEATURES: THIN SHELL INSTABILITY I Vishniac, E. 1983; ApJ 274, 152
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY I shocked AGB wind shocked fast wind free AGB wind forward shock
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Vishniac, E. 1994; ApJ 428, 186 nonisotropic ram pressure
SPHERICAL SYMMETRY: IONIZATION INSTABILITIES (?) SPHERICAL SYMMETRY: RAYLEIGH-TAYLOR INSTABILITY AXIAL SYMMETRY: KELVIN-HELMHOLTZ INSTABILITY SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II Movie: courtesy Doris Folini & Rolf Walder
SMALL-SCALE FEATURES: THIN SHELL INSTABILITY II John Blondin
SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. & Franco, J. 1996; ApJ 469, p.171
SMALL-SCALE FEATURES: IONIZED SHELL INSTABILITY Garcia-Segura,G. et al. 1999; ApJ 517, p.767 M slow =10 -5 M /yr. M fast =10 -7 M /yr. F ion =10 46 /s
PIECES OF THE PUZZLE MHD
MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 ( B(2R * ) = 2G )
Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON RADIATIVELY DRIVEN WIND
Różyczka, M. & Franco, J. 1996; ApJ 469, p.L127 MHD: WEAK FIELD, TOROIDAL PINCH ON MAGNETICALLY DRIVEN WIND M * = 1 M R * = 4.5 AU spherical wind M w = M /yr at R * toroidal field of 0.1, 1 or 5 G
MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/ dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed
MHD: STRONG FIELD; „MAGNETIC EXPLOSION” Matt, S. 2003; arXiv:astro-ph/ dipole field anchored in the core; envelope ejected if v * v A v e −2 > 0.1 to match pPNe fields of 10 5 –10 8 G are needed
C. Fendt MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD B v 2 B v 2
MHD: JETS FROM LARGE-SCALE POLOIDAL FIELD Kuwabara, T. et al. 2005; ApJ 621, 921
MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267
MHD: JETS FROM INTERNAL POLOIDAL FIELD Kudoh, T., Matsumoto, R. & Shibata, K. 2002; PASJ 54, 267