Chemical Thermodynamics 2013/2014 2 nd Lecture: Zeroth Law, Gases and Equations of State Valentim M B Nunes, UD de Engenharia.

Slides:



Advertisements
Similar presentations
Any Gas….. 4 Uniformly fills any container 4 Mixes completely with any other gas 4 Exerts pressure on its surroundings.
Advertisements

Gases: Properties and Behaviour  Gas Laws  Partial Pressures  Kinetic Theory and Ideal Gases  Real Gases  Diffusion and Effusion.
GASES! AP Chapter 10. Characteristics of Gases Substances that are gases at room temperature tend to be molecular substances with low molecular masses.
The Gaseous State 5.1 Gas Pressure and Measurement 5.2 Empirical Gas Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gas Volumes.
The Gaseous State. Copyright © Houghton Mifflin Company.All rights reserved. Presentation of Lecture Outlines, 5–2 Gas Laws In the first part of this.
The Gaseous State Chapter 5.
Chapter 11 Gases Copyright McGraw-Hill
CHEMISTRY Matter and Change
Ch Gases Properties: Gases are highly compressible and expand to occupy the full volume of their containers. Gases always form homogeneous mixtures.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Real gases 1.4 Molecular interactions 1.5 The van de Waals equation 1.6 The principle of corresponding states Real gases do not obey the perfect gas law.
Daniel L. Reger Scott R. Goode David W. Ball Chapter 6 The Gaseous State.
1 GASES Paul Gilletti, Ph.D. Mesa Community College.
Gases Chapter 12 pp General properties & kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas.
The Behavior of Gases. Properties of Gases (Review) No definite shape No definite volume compressible.
Chemistry Chapter 10 notes Physical Characteristics of Gases.
Chemistry 100 Gases and Gas Laws.
Real gas 1.molecules not always in motion (condense phase can be formed) 2.molecular size is non-negligible (there is molecular repulsion) 3.Molecules.
The Behavior of Gases. Properties of Gases (Review) No definite shape No definite shape No definite volume No definite volume compressible compressible.
Chapter 5: Gases Renee Y. Becker Valencia Community College CHM
Gas!!! It’s Everywhere!!!!.
1 Chapter 6: The States of Matter. 2 PHYSICAL PROPERTIES OF MATTER All three states of matter have certain properties that help distinguish between the.
Gases and Kinetic Molecular Theory
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass Much less compared to liquids and solids Much less compared to liquids and solids.
CHAPTER 6 CONCURRENT ENROLLMENT. MATTER  Solids have a definite shape  Liquids will have the shape of the container, it will not always fill the container.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
1. Gases & Atmospheric Chemistry Gases; a unique state of matter following their own laws and displaying interesting chemical behaviour
Gases and gas laws Chapter 12.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
1 Gases Part 1. 2 Properties of Gases Gases have very low densities, and may be compressed or expanded easily: in other words, gases expand or compress.
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Chapter 8 Real Gases.
Gases Properties Kinetic Molecular Theory Variables The Atmosphere Gas Laws.
The Gas State  Gases are everywhere – atmosphere, environmental processes, industrial processes, bodily functions  Gases have unique properties from.
Chapter 09Slide 1 Gases: Their Properties & Behavior 9.
ERT 108/3 PHYSICAL CHEMISTRY INTRODUCTION Prepared by: Pn. Hairul Nazirah Abdul Halim.
Gases Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
GASES.
Chapter 5: The Gaseous State Chemistry 1061: Principles of Chemistry I Andy Aspaas, Instructor.
Chapter 5 Gases.
Chapter 5 – Gases. In Chapter 5 we will explore the relationship between several properties of gases: Pressure: Pascals (Pa) Volume: m 3 or liters Amount:
Ideal Gases-Microscope Definition We define an ideal gas to have the following properties: 1- There are no atomic interactions among the molecules or atoms.
1 The Gaseous State. 2 Gas Laws  In the first part of this chapter we will examine the quantitative relationships, or empirical laws, governing gases.
Chapter 101 Gases. 2 Homework: 10.12, 10.28, 10.42, 10.48, 10.54, 10.66,
Combined Gas Law. How can you combine all three laws into one equation? Boyle’s LawP x V Charles’s LawV / T Gay-Lussac’s LawP / T.
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
1 Compiled by MAH 100’s of free ppt’s from librarywww.pptpoint.com.
Thermal Physics 3.2 Modelling a gas. Understanding  Pressure  Equation of state for an ideal gas  Kinetic model of an ideal gas  Mole, molar mass,
University of Nebraska-Lincoln
Introduction and Gases. Physics - study of the properties of matter that are shared by all substances Chemistry - the study of the properties of the substances.
States of Matter and Gases Unit 9. The States of Matter Solid: material has a definite shape and definite volume Solid: material has a definite shape.
Advanced Physics Chapter 13 Temperature and Kinetic Theory.
GASES. Gases  The physical state of gases is defined by several physical properties  Volume  Temperature  Amount (commonly expressed as number of.
Gases expand, diffuse, exert pressure, and can be compressed because they are in a low-density state consisting of tiny, constantly moving particles. Section.
Thermal Physics 3.2 Modelling a gas. Understanding  Pressure  Equation of state for an ideal gas  Kinetic model of an ideal gas  Mole, molar mass,
The Properties of Gases Chapter 12. Properties of Gases (not in Notes) Gases are fluids… Fluid: (not just to describe liquids)  can describe substances.
The Behavior of Gases Chapter 14. Chapter 14: Terms to Know Compressibility Boyle’s law Charles’s law Gay-Lussac’s law Combined gas law Ideal gas constant.
The Gaseous State. Gases consist of widely separated molecules in rapid motion. pressuretemperaturevolume molar amount All gases near room temperatures.
Prentice Hall © 2003Chapter 10 Chapter 10 Gases CHEMISTRY The Central Science 9th Edition.
The Gaseous State 5.1 Gas Pressure and Measurement
ERT 108 Physical Chemistry INTRODUCTION-Part 2
Parul Institute of Engineering & Technology
Gas Laws.
NARNARAYAN SHASHTRI INSTITUTE OF TECHNOLOGY
Properties of Gases Kinetic Molecular Model Speed of gas
Chapter 10 Gases: Their Properties and Behavior
Lecture Presentation Chapter 10 Gases.
Unit 9: Gases.
Presentation transcript:

Chemical Thermodynamics 2013/ nd Lecture: Zeroth Law, Gases and Equations of State Valentim M B Nunes, UD de Engenharia

2 The Gaseous State When studying Thermodynamics we don’t need any theory about molecular structure but, in order to understand the subject, its good to have in mind molecular models for the states of matter. The gaseous state it is often taken as an example to describe the principles of Thermodynamics. In this Lecture we will review some of the basic concepts about the gaseous state, namely the concepts of pressure and temperature, and the basic laws of gases.

3 Ideal Gases A good vision of an ideal gas is an assembly of molecules, with sizes much smaller than average distances travelled between collisions, in continuous random (chaotic) movement, with velocities that increase with temperature, and that only interact in elastic collisions For a given system with volume, V, number of moles, n, and at pressure, p, and temperature, T, we say that it is at a given thermodynamic state. All this properties are not independent from each other. In other words they are related by an Equation of State. Before proceeding to those equations of state let us examine the concepts of pressure and temperature.

Pressure 4 The pressure is a force exerted by an unit area. In the International System (SI) the unit for pressure is the Pascal (Pa). 1 Pa = 1 N.m -2 1 bar = 100 kPa (exact value) 1 atm = Pa (exact value) 1 atm = 760 mmHg (exact value)

Temperature 5 Although the temperature is a fundamental physical concept, it is very difficult to define it. Temperature is the property that indicate us in what direction the heat flows! zeroth law of thermodynamics The definition of temperature results from the so called “zeroth law of thermodynamics”: if two systems are separately in thermal equilibrium with a third, then they must also be in thermal equilibrium with each other A, B and C share the same temperature.

6 Boyle´s Law At constant n and T, we obtain Isothermals of the gas.

7 Charles Law At constant n and p, we obtain Lord Kelvin was the first one to recognize the outstanding importance of this Law, giving origin to the absolute scale of temperatures. Isobaric of the gas

8 Avogadro's Law At constant p and T, we obtain

9 Perfect Gas Equation of State Combining the laws of gases we can easily obtain the perfect gas equation of state: Were R is the perfect gas constant. In the SI, R ≈ 8,314 J.K -1.mol -1. In non SI units it may be expressed by R ≈ 0,082 atm.L.K -1.mol -1 At STP (standard temperature and pressure), t=0 ºC and p=1 atm, the molar volume of a perfect gas, V m = V/n is:

Surface of Possible States 10

11 pVT surface of an ideal gas

12 Mixtures: Dalton´s Law The pressure exerted by a mixture of perfect gases is the sum of the pressures exerted by the individual gases occupying the same volume Dalton´s Law writes as follow:

Real Gases 13 For non-perfect gases there are present intermolecular forces, attractive and repulsive, between atoms and molecules, giving origin to deviations from ideality A quantitative measure o non-ideality is the compressibity factor, Z: Ideal gas Z = 1

14 Real Gas (CO 2 ) pV isotherms Experimental isotherms for carbon dioxide CDE – vapor pressure of CO2 at 20 ºC The isotherm at 31,04 ºC corresponds to the critical isotherm * Critical point In the absence of intermolecular forces there will be no condensate states of matter (solids and liquids)!

15 Virial Equation of States At higher temperatures some of the isotherms are similar to the ideal gas. Perfect gas equation can be expanded, in terms of virial equations: Leiden form Berlin form B and B’ – 2 nd virial coefficient C and C’ – 3 rd virial coefficient

16 Virial coefficients: dependence of temperature

17 van der Waals equation van der Waals corrected the perfect gas equation by assuming that molecules occupy some space, and there are long–range intermolecular forces.

18 Molar volume calculation The VDW equation is cubic in volume, so it gives three roots for the volume in the VLE zone. Molar volume of liquid Molar volume of gas Without physical significance!

19 The critical isotherm For the critical isotherm there is an inflexion point. In mathematical terms we have: Solving these equations we have Solving altogether we obtain the critical values:

20 The Principle of Corresponding States If we define now a new set of parameters (reduced parameters): Substituting in the VDW equation we obtain: This means that two different gases at the same reduced temperature and reduced volume should exert the same reduced pressure, and they are in corresponding states.

21 Z factor for several gases

22 Equations of state