The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu3e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu3e February 2014 25.02.2014.

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

CO2 cooling for FPCCD Vertex Detector Yasuhiro Sugimoto KEK 1.
outline introduction experimental setup & status
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
1 G4MICE studies of PID transverse acceptance MICE video conference Rikard Sandström.
The LHCb Inner Tracker Marc-Olivier Bettler SPS annual meeting Zürich 21 February 2007.
GlueX Simulations Status Report on CD3 geometry Richard Jones GlueX Collaboration Meeting, Newport News, January 10-12, 2008.
The AMS-02 detector is based on a large acceptance (~0.5 m²sr) and high sensitivity spectrometer composed by a super-conducting magnet (0.8 T), cooled.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
Tracking Integration Challenges Y. meeting 2013/9/25.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
18 November 2010 Immanuel Gfall (HEPHY Vienna) SVD Mechanics IDM.
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
1 VI Single-wall Beam Pipe tests M.OlceseJ.Thadome (with the help of beam pipe group and Michel Bosteels’ cooling group) TMB July 18th 2002.
Precision Drift Chambers for the ATLAS Muon Spectrometer Susanne Mohrdieck Max-Planck-Institut f. Physik, Munich for the ATLAS Muon Collaboration Abstracts:
ILC Vertex Tracker Ladder Studies At LBNL M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
, T. Tischler, CBM Collaboration Meeting, GSI Status MVD demonstrator: mechanics & integration T.Tischler, S. Amar-Youcef, M. Deveaux, D. Doering,
1 CLAS12/Central Tracker review. Saclay 12/09 Stéphan AUNE Central Tracker review Micromegas central & forward tracker  R&D and prototypes  CAD implantation.
ICHEP 2012 Melbourne, 7 July 2012 Paul Soler on behalf of the MICE Collaboration The MICE Beam Line Instrumentation (Trackers and PID) for precise Emittance.
Jochen Ebert, Uni Karlsruhe1 Powering via cooling pipes very first results.
Thermal & Mechanical Support for Diamond Pixel Modules Justin Albert Univ. of Victoria Nov. 6, 2008 ATLAS Tracker Upgrade Workshop.
PHENIX Silicon Vertex Tracker. Mechanical Requirements Stability requirement, short and long25 µm Low radiation length
CLICdp achievements in 2014 and goals for 2015 Lucie Linssen, CERN on behalf of the CLICdp collaboration CLIC workshop, January 30 th
The NA62 rare kaon decay experiment Photon Veto System Vito Palladino for NA62 Coll.
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
1 VI Single-wall Beam Pipe Option: status and plans M.Olcese TMB June 6th 2002.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
15 February 2007Dirk Wiedner / LHCb1 Radiation Monitors for LHCb.
Update on Micro Channel Cooling Collaboration Meeting , G. Nüßle.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
ILD Vertex Detector Y. Sugimoto 2012/5/24 ILD
Walter Sondheim 6/9/20081 DOE – Review of VTX upgrade detector for PHENIX Mechanics: Walter Sondheim - LANL.
1. Efficient trigger for many B decay topologies Muon System CALORIMETERS PRS + ECAL+ HCAL RICH1 VERTEX LOCATOR Efficient PID Good decay time resolution.
The trigger-less TBit/s readout for the Mu3e experiment Dirk Wiedner On behalf of the Mu3e collaboration 24 Sep 20131Dirk Wiedner TWEPP2013.
Rene BellwiedSTAR Tracking Upgrade Meeting, Boston, 07/10/06 1 ALICE Silicon Pixel Detector (SPD) Rene Bellwied, Wayne State University Layout, Mechanics.
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
Technical Design for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
News on Mechanical Design Dirk Wiedner July /4/20121Dirk Wiedner Mu3e meeting Zurich.
FGT Magnet C Assembly metric tons (59 US tons) -100mm thick steel plates -6.6m high x 3.1m wide x 1m deep (outer dimensions) -5m high x 2.25m wide.
A Novel Experiment Searching for the Lepton Flavor Violating Decay μ→eee Dirk Wiedner, Heidelberg On Behalf of the Mu3e Proto-Collaboration July 24 th.
The trigger-less readout for the Mu3e experiment Dirk Wiedner On behalf of the Mu3e collaboration 31 March 20161Dirk Wiedner.
24 June 2013 GSI, Darmstadt Helmholtz Institut Mainz Bertalan Feher, PANDA EMP First Measurements for a Superconducting Shield for the PANDA Polarized.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
13 Januar 2011 Immanuel Gfall (HEPHY Vienna) Annekathrin Frankenberger (HEPHY Vienna) SVD Cooling Cooling Meeting Karlsuhe.
Multiple Scattering and Sensor Thickness Preserving track extrapolation accuracy to bulk of particles at low momentum requires ultra-thin sensors and mechanical.
Study of a Superconducting Shield for a Transverse Polarized Target for PANDA 2012 Paris Helmholtz Institut Mainz Bertalan Feher, PANDA EMP Session Status.
Atlas SemiConductor Tracker final integration and commissioning Andrée Robichaud-Véronneau Université de Genève on behalf of the Atlas SCT collaboration.
Straw man layout for ATLAS ID for SLHC
GSI, for the CBM Collaboration
Progress with System Integration of the CBM Silicon Tracking Detector
Micro Vertex Detector of PANDA Status of Strip BARREL and DISC
Oleg Vasylyev, GSI Helmholtz Center, Darmstadt, Germany
FCAL R&D towards a prototype of very compact calorimeter
Technical Design for the Mu3e Detector
Christoph Schwanda (HEPHY Vienna) For the Belle II SVD group
- STT LAYOUT - SECTOR F SECTOR A SECTOR B SECTOR E SECTOR D SECTOR C
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
IFR Status Summary W. Baldini on behalf of the IFR Group
Layout of Detectors for CLIC
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Hervé Allain, R. van Weelderen (CERN)
IHEP group Shashlyk activity towards TDR
IFR detector mechanics
WG4 – Progress report R. Santoro and A. Tauro.
as a prototype for Super c-tau factory
Presentation transcript:

The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu3e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu3e February Dirk Wiedner INSTR14

The Mu3e Signal Dirk Wiedner INSTR14 2 μ → eee rare in SM Enhanced in: o Super-symmetry o Grand unified models o Left-right symmetric models o Extended Higgs sector o Large extra dimensions  Rare decay (BR<10 -12, SINDRUM) For BR O( )  >10 16 muon decays  High decay rates O(10 9 muon/s)

The Mu3e Background 7/17/2012Dirk Wiedner, Mu3e collaboration 3 Combinatorial background o μ + →e + νν & μ + →e + νν & e + e - o many possible combinations  Good time and  Good vertex resolution required

Combinatorics 7/17/2012Dirk Wiedner, Mu3e collaboration 4

The Mu3e Background 7/17/2012Dirk Wiedner, Mu3e collaboration 5 μ + →e + e - e + νν o Missing energy (ν)  Good momentum resolution (R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) )

Challenges High rates Good timing resolution Good vertex resolution Excellent momentum resolution  Extremely low material budget 7/17/2012Dirk Wiedner, Mu3e collaboration 6

Challenges High rates: 10 9 μ/s Good timing resolution: 100 ps Good vertex resolution: ~100 μm Excellent momentum resolution: ~ 0.5 MeV/c 2  Extremely low material budget:  1x10 -3 X 0 (Si-Tracker Layer)  HV-MAPS spectrometer  50 μm thin sensors  B ~1 T field  + Timing detectors 7/17/2012Dirk Wiedner, Mu3e collaboration 7

Phased Experiment Dirk Wiedner INSTR14 8 Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station Tile detector Muon beam O(10 7 /s) Helium atmosphere 1 T B-field Phase Ia

Phased Experiment Dirk Wiedner INSTR14 9 Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station Tile detector Muon beam O(10 8 /s) Helium atmosphere 1 T B-field Phase Ib

Phased Experiment Dirk Wiedner INSTR14 10 Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station x 2 Tile detector x 2 Muon beam O(10 9 /s) Helium atmosphere 1 T B-field Ca. 2 m total length Phase II

Ultra Light Support Structure for the Pixel Tracker Dirk Wiedner INSTR14 11

Sandwich Design Dirk Wiedner INSTR14 12 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors <0.1% of X 0

Thinned Pixel Sensors Dirk Wiedner INSTR14 13 HV-MAPS* o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors MuPix3 thinned to < 90μm *Previous talk: Tobias Weber “High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector”High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector

Kapton™ Flex Print Dirk Wiedner INSTR14 14 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors Laser-cut flex print prototype

Pixel Modules Dirk Wiedner INSTR14 15 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors CAD of Kapton™ frames

Overall Design Dirk Wiedner INSTR14 16 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors CAD of Kapton™ frames Two halves for layers modules in layer 3 7 modules in layer 4

Inner Layers Dirk Wiedner INSTR14 17 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors Vertex Prototype with 100 μm Glass

Outer Module Dirk Wiedner INSTR14 18 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μm Glass

Detector Frame Dirk Wiedner INSTR14 19 HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 Kapton™ flex print o 25 μm Kapton™ o 12.5 μm Alu traces Kapton™ Frame Modules o 25 μm foil o Self supporting Alu end wheels o Support for all detectors Layer 3 Prototype in Assembling Frame with 50 μm Glass

Cooling Dirk Wiedner INSTR14 20

Cooling Concept Dirk Wiedner INSTR14 21 Liquid cooling o For readout-electronics Gaseous He cooling o For Silicon tracker Liquid He

Liquid Cooling Dirk Wiedner INSTR14 22 Beam pipe cooling o With cooling liquid o 5°C temperature o Significant flow possible o … using grooves in pipe For electronics o FPGAs and o Power regulators o Mounted to cooling plates Total power several kW

He Cooling Dirk Wiedner INSTR14 23 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface He 150mW/cm 2 x 19080cm 2 = 2.86 KW

He Cooling Dirk Wiedner INSTR14 24 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface Temperatures between 20°C to 70°C ok.

He Cooling Dirk Wiedner INSTR14 25 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface

He Cooling Dirk Wiedner INSTR14 26 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface

He Cooling Dirk Wiedner INSTR14 27 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface Kapton™ Frame V-shape Cooling outlets

He Cooling Dirk Wiedner INSTR14 28 Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Global flow inside Magnet volume Local flow for Tracker o Distribution to Frame V-shapes Outer surface

Comparison Simulation He and Air HeAir Dirk Wiedner INSTR14 29

Tests Dirk Wiedner INSTR14 30 Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o W for layer 3 +4 o … of Aluminum-Kapton™ Cooling with external fan o Air at several m/s Temperature sensors attached to foil o LabView readout First results promising o ΔT < 60°K

Dirk Wiedner INSTR14 31

Tests Dirk Wiedner INSTR14 32 Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o W for layer 3 +4 o … of Aluminum-Kapton™ Cooling with external fan o Air at several m/s Temperature sensors attached to foil o LabView readout First results promising o ΔT < 60°K

Test Results Dirk Wiedner INSTR14 33 Full scale prototype o Layer 3+4 of silicon tracker o Ohmic heating (150mW/cm 2 ) o W for layer 3 +4 o … of Aluminum-Kapton™ Cooling with external fan o Air at several m/s Temperature sensors attached to foil o LabView readout First results promising o ΔT < 60°K  No sign of vibration in air

Comparison Simulation and Tests Dirk Wiedner INSTR14 34

Simulation with V-shape cooling Dirk Wiedner INSTR14 35 Configuration: Configuration: o Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s In V-shape against main flux In V-shape against main flux Next to V-shape against main flux Next to V-shape against main flux  mL/s per nozzle  L/s for 3. Layer Results: Results: o ∆T max ≈ 42°C o ∆T max close to end of tube o T raises at last third of tube → Extra Improvement using V-shapes as cooling channels

Simulation with V-shape cooling Dirk Wiedner INSTR14 36 Configuration: Configuration: o Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s In V-shape against main flux In V-shape against main flux Next to V-shape against main flux Next to V-shape against main flux  mL/s per nozzle  L/s for 3. Layer Results: Results: o ∆T max ≈ 42°C o ∆T max close to end of tube o T raises at last third of tube → Extra Improvement using V-shapes as cooling channels

Summary Mechanics o Ultralight Sandwich Structure <0.1%X 0 o Self Supporting o Assembly tests have started Cooling o Liquid cooling of beam pipe o Gaseous He cooling of Tracker o Ongoing studies encouraging Dirk Wiedner INSTR14 37

Backup slides Dirk Wiedner INSTR14 38

He Properties Molecular weight : g/mol Gaseous phase Gas density (1.013 bar at boiling point) : kg/m 3 Gas density (1.013 bar and 15 °C (59 °F)) : kg/m 3 Compressibility Factor (Z) (1.013 bar and 15 °C (59 °F)) : Specific gravity : Specific volume (1.013 bar and 25 °C (77 °F)) : m 3 /kg Heat capacity at constant pressure (Cp) (1.013 bar and 25 °C (77 °F)) : kJ/(mol.K) Heat capacity at constant volume (Cv) (1.013 bar and 25 °C (77 °F)) : kJ/(mol.K) Ratio of specific heats (Gamma:Cp/Cv) (1.013 bar and 25 °C (77 °F)) : Viscosity (1.013 bar and 0 °C (32 °F)) : E -04 Poise Thermal conductivity (1.013 bar and 0 °C (32 °F)) : mW/(m.K) Dirk Wiedner INSTR14 39

Air Properties Molecular weight : g/mol Gaseous phase Gas density (1.013 bar at boiling point) : 3.2 kg/m 3 Gas density (1.013 bar and 15 °C (59 °F)) : kg/m 3 Compressibility Factor (Z) (1.013 bar and 15 °C (59 °F)) : Specific gravity : 1 Specific volume (1.013 bar and 25 °C (77 °F)) : m 3 /kg Heat capacity at constant pressure (Cp) (1.013 bar and 25 °C (77 °F)) : kJ/(mol.K) Heat capacity at constant volume (Cv) (1.013 bar and 25 °C (77 °F)) : kJ/(mol.K) Ratio of specific heats (Gamma:Cp/Cv) (1.013 bar and 25 °C (77 °F)) : Viscosity (1 bar and 0 °C (32 °F)) : 1.721E -04 Poise Thermal conductivity (1.013 bar and 0 °C (32 °F)) : mW/(m.K) Dirk Wiedner INSTR14 40

Radiation Length Dirk Wiedner INSTR14 41 Radiation length per layer o 2x 25 μm Kapton o X 0 = 1.75∙ μm aluminum traces o (50% coverage) o X 0 = 8.42 ∙10 -5 o 50 μm Si MAPS o X 0 = 5.34 ∙10 -4 o 10 μm adhesive o X 0 = 2.86 ∙10 -5 Sum: 8.22 ∙10 -4 (x4 layers) o For Θ min = 22.9◦ o X 0 = 21.1 ∙10 -4

Thinning 7/17/2012Dirk Wiedner, Mu3e collaboration μm Si-wafers o Commercially available o HV-CMOS 75 μm (AMS) Single die thinning o For chip sensitivity studies o < 50 μm desirable o 90 μm achieved and tested o In house grinding?

Thinned Sensors Dirk Wiedner PSI 1/14 43 Single dies thinned: o MuPix2 thinned to < 80μm o MuPix3 thinned to < 90μm Good performance of thin chips o In lab o In particle beam Similar Time over Threshold (ToT) o PSI test-beam o PiM1 beam-line o 193 MeV π + Reference Thin < 90μm Time Over Threshold

Combinatorics using Timing System 7/17/2012Dirk Wiedner, Mu3e collaboration 44

Muon Stopping Target Requirements: ▪ Sufficient material in beam direction to stop 29 MeV/c surface muons ▪ Thin for decay electrons in detector acceptance Baseline solution: ▪ Hollow double cone ▪Aluminum ▪Thickness: 30 μ m (us cone), 80 μ m (ds cone) Manufacturing (brainstorming):▪Rolled up Al-foil ▪Additive manufacturing / 3D printing ▪Casting ( D: Giessen) ▪ Impact extrusion ( D: Fliesspressen) 100 mm 20 mm → first trial Dirk Wiedner INSTR14 45

Target Prototyping Dirk Wiedner INSTR14 46 Components of mold o Casting mold o Spike o Additional spacer Achievable properties: o Density ~1.8 g/cm3 o Minimal wall thickness ~50 μm Next steps: o New mold (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone

Target Prototyping Dirk Wiedner INSTR14 47 Components of mold o Casting mold o Spike o Additional spacer Achievable properties: o Density ~1.8 g/cm3 o Minimal wall thickness ~50 μm Next steps: o New mold (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone

Target Prototyping Dirk Wiedner INSTR14 48 Components of mold o Casting mold o Spike o Additional spacer Achievable properties: o Density ~1.8 g/cm3 o Minimal wall thickness ~50 μm Next steps: o New mold (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone

Fiber Tracker Dirk Wiedner INSTR14 49 Fiber ribbon modules o 16 mm wide o 360 mm long o 3 layers fibers of 250 μm dia. o 3 STiC readout chips Total fiber Tracker: o 24 ribbon-modules o 72 read-out chips o 4536 fibers Prototype ribbons built: o 3 layers o 16 mm wide o 360 mm long CAD in progress Scintillating fiber ribbons See: Fibres Alessandro Bravar (Geneva University)

Tile Detector Dirk Wiedner INSTR14 50 Scintillating tiles o 8.5 x 7.5 x 5 mm 3 12 Tile Modules per station o 192 tiles/module o Attached to end rings SiPMs attached to tiles o Front end PCBs below o Readout through STiC Sketch of Tile detector station See: Tiles Patrick Eckert (KIP Uni Heidelberg)

Tile Detector Dirk Wiedner INSTR14 51 Scintillating tiles o 8.5 x 7.5 x 5 mm 3 12 Tile Modules per station o 192 tiles/module o Attached to end rings SiPMs attached to tiles o Front end PCBs below o Readout through STiC CAD of Tile Detector integration See: Tiles Patrick Eckert (KIP Uni Heidelberg)

Beam Pipe Dirk Wiedner INSTR14 52 Stainless steel pipe o Shields against background Mechanical support o Detectors attached to beam pipe o Via end rings Read-out PCBs attached o FPGAs mounted directly o Integrated cooling Beam pipe design

Beam Pipe Dirk Wiedner INSTR14 53 Stainless steel pipe o Shields against background Mechanical support o Detectors attached to beam pipe o Via end rings Read-out PCBs attached o FPGAs mounted directly o Integrated cooling Beam pipe supports detectors

Beam Pipe Dirk Wiedner INSTR14 54 Stainless steel pipe o Shields against background Mechanical support o Detectors attached to beam pipe o Via end rings Read-out PCBs attached o FPGAs mounted directly o Integrated cooling PCBs mounted on beam pipe

Overall Assembly Dirk Wiedner INSTR14 55 CAD of: o Silicon Tracker + o Tile detector + o Target + o PCBs + o Beam pipe + o Cooling To be added: o Scintillating fiber detector o Cabling o Cage and rails in Magnet CAD of Phase I detector

Tile Detector Dirk Wiedner INSTR14 56 Scintillating tiles o 8.5 x 7.5 x 5 mm 3 12 Tile Modules per station o 192 tiles/module o Attached to end rings SiPMs attached to tiles o Front end PCBs below o Readout through STiC Tile detector 4 x 4 prototype See: Tiles Patrick Eckert (KIP Uni Heidelberg)

Magnet Dirk Wiedner INSTR14 57

Magnet Specification Dirk Wiedner INSTR – 2 T field 1 m warm bore 2 m homogenous in z 2.5 m coil + shielding Compensation coils homogeneity stability D0 magnet similar

Magnet Specification Dirk Wiedner INSTR – 2 T field 1 m warm bore 2 m homogenous in z 2.5 m coil + shielding Compensation coils homogeneity stability Magnet Dimensions

Magnet Specification Dirk Wiedner INSTR – 2 T field 1 m warm bore 2 m homogenous in z 2.5 m coil + shielding Compensation coils homogeneity stability Compensation coil effect

2 m plus Compensation Coils vs 3 m Coil 2 m plus compensation coils 3 m Dirk Wiedner INSTR14 61 z field Radial field z field Radial field

Momentum Resolution 2 m coil3 m coil Dirk Wiedner INSTR14 62

Efficiency Dirk Wiedner INSTR14 63 Compensation

Space Restrictions Dirk Wiedner INSTR14 64 Phase I: o Beam line at πE5 o Surface muons from target E o Up to a 10 8 μ/s Space shared with MEG experiment

Dirk Wiedner INSTR14 65 MEG 2 working site Quadrupole Triplett SeparatorSeparator Mu3e Spectrometer Solenoid Mu3e Compact Beam Line Dipole Magnets

Space Restrictions Dirk Wiedner INSTR14 66 Phase I: o Beam line at πE5 o Surface muons from target E o Up to 10 8 μ/s Space shared with MEG experiment Maximum magnet size: o 3.1 m long o 2 m diameter Air-cushions underneath Limited roof height 3.5 m

Outlook Dirk Wiedner INSTR14 67 Mechanics o Functional tests of prototypes o Integration of prototypes in global design Cooling o Test local cooling with module prototypes o He tests Magnet o DFG application