Micro MEsh GASeous Detectors (MicroMegas)

Slides:



Advertisements
Similar presentations
Developments of micromegas detector at CERN/Saclay
Advertisements

Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
24/05/2010Rui De Oliveira1 Resistive protections for Bulk Micromegas Rui de oliveira, Joerg Wotschack Venetios Polychronakos.
Recent achievements and projects in Large MPGDs Rui de Oliveira 21/01/2009 RD51 WG1 workshop.
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Practical operation of Micromegas detectors
Tracking detectors/1 F.Riggi.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 technical workshop 03/17/ 2010 Jefferson lab Update on.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 central detector meeting : 2 december 2009 Cea Saclay CERN.
Proposal and current status of developments 4 th RD51 meeting (WG1) 23 November 2009 Atsuhiko Ochi ( Kobe University )
General needs at CERN for special PCB’s Philippe Farthouat CERN.
Large-size micromegas for ATLAS (MAMMA) Status and prospects RD51 mini week, 17/01/2011Joerg Wotschack (CERN)1.
Read-out boards Rui de Oliveira 16/02/2009 RD51 WG1 workshop Geneva.
Characterization of the electrical response of Micromegas detectors to spark processes. J.Galan CEA-Saclay/Irfu For the RD51 meeting.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
Practical operation of Micromegas detectors Paul Colas, CEA/Irfu Saclay CERN, Feb.17, 20091Practical operation of Micromegas.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Atsuhiko Ochi Kobe University 25/06/2013 New Small Wheel MicroMegas Mechanics and layout Workshop.
Atsuhiko Ochi, Yuki Edo, Yousuke Kataoka ATLAS MicroMEGAS meeting, 11/12/12.
1 Small GEM Detectors at STAR Yi Zhou University of Science & Technology of China.
Resistive Strips Preparation - with carbon sputtering -
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
15/07/2010Rui De Oliveira1 Update on large size GEM manufacturing Rui de Oliveira.
Test Beam the μ-RWELL Test Beam the μ-RWELL G. Bencivenni (a), R. de Oliveira (b), M. Gatta (a), G. Felici (a), G. Morello (a), M. Poli Lener (a) (a),
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
Piggyback seal Micromegas D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas, J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R.
M. Bianco On behalf of the ATLAS Collaboration
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
24/05/2010Rui De Oliveira1 Resistive protections for Bulk Micromegas Rui de oliveira, Joerg Wotschack Venetios Polychronakos.
PNPI R&D on based detector for MUCH central part (supported by INTAS ) E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L.
Summary of MM meeting at CEA Saclay, 25/26 Jan 2010 Some selected topics.
you me  when it all started to work  progress made  outlook.
Resistive protections Rui de Oliveira 09/12/15
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
Review of Micromegas Tracking Detectors for CLAS12 – May 7, 2009 Reviewers: Madhu Dixit, Mac Mestayer Presentations covered the following topics: –detector.
Construction and Characterization of a GEM G.Bencivenni, LNF-INFN The lesson is divided in two main parts: 1 - construction of a GEM detector (Marco Pistilli)
Zaragoza, 5 Julyl Construction of and experience with a 2.4 x 1 m² micromegas chambers Givi Sekhniaidze On behalf of the Micromegas community.
NoV. 11, 2009 WP meeting 94 1 D. Attié, P. Colas, E. Ferrer-Ribas, A. Giganon, I. Giomataris, F. Jeanneau, P. Shune, M. Titov, W. Wang, S. Wu RD51 Collaboration.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Development of μ-PIC with resistive electrodes using sputtered carbon Kobe Univ.,Tokyo ICEPP A F.Yamane, A.Ochi, Y.Homma S.Yamauchi, N.Nagasaka, H.Hasegawa,
MPGD TECHNOLOGIES AND PRODUCTION GEMMicromegas Resistive MSGC (NEW!) Rui De Oliveira 7/12/20111Rui De Oliveira.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
MICROMEGAS per l’upgrade delle Muon Chambers di ATLAS per SLHC Arizona, Athens (U, NTU, Demokritos), Brookhaven, CERN, Harvard, Istanbul (Bogaziçi, Doğuş),
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
First results from tests of gaseous detectors assembled from resistive meshes P. Martinengo 1, E. Nappi 2, R. Oliveira 1, V. Peskov 1, F. Pietropaola 3,
-Stephan AUNE- RD51 BARI. Saclay MPGD workshop R&D 09/10/20101 Saclay workshop R&D for new Bulk structure.
The principle of operation of a micromegas chamber
An extension of Ramo's theorem to include resistive elements
New MPGDs at CERN PCB Workshop
GEM and MicroMegas R&D Xiaomei Li Science and Technology
some thoughts on charging-up effects
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
Hybrid MPGD based photon detector, R&D update.
Updates on the Micromegas + GEM prototype
Numerical simulations on single mask conical GEMs
Numerical simulations on single mask conical GEMs
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
A DLC μRWELL with 2-D Readout
Presentation transcript:

Micro MEsh GASeous Detectors (MicroMegas) RD51 Electronics school CERN 3 – 5 February 2014

What are Micromegas ? The principle of operation Micromegas are parallel-plate chambers where the amplification takes place in a thin gap, separated from the conversion region by a fine metallic mesh The thin amplification gap (short drift times and fast absorption of the positive ions) makes it particularly suited for high-rate applications -800 V -550 V Conversion & drift space Mesh Amplification Gap 128 µm (few mm) The principle of operation of a MicroMegas chamber RD51 Electronics School 03 - 05 February 2014

The bulk MicroMegas technique Drift UV 5 mm Pillars (Ø ~300μm) Mask 128 µm PCB 250 µm 150 µm RD51 Electronics School 03 - 05 February 2014

Bulk MicroMegas structure Standard configuration Pillars every 5 (or 10) mm Pillar diameter ≈350 µm Dead area ≈1.5 (0.4)% Amplification gap 128 µm Mesh: 325 lines/inch Pillar distance on photo: 2.5 mm RD51 Electronics School 03 - 05 February 2014

MicroMegas as μTPC µ HV = -850 V HV = -550 V RD51 Electronics School 03 - 05 February 2014

Operating parameters Chambers are operating with an Ar:CO2 (93:7) gas mixture (same gas as MDTs, safe and cheap, no flammable components) High Voltage (moderate HV requirements) Mesh: -500 V (amplification field 40-50 kV/cm) Drift-electrode: -800 V (~600 V/cm) Currents in nA range RD51 Electronics School 03 - 05 February 2014

Performance requirements Spatial resolution: ~60 m Angular resolution: ~0.3 mrad Good double track resolution Trigger capability Efficiency: > 98% RD51 Electronics School 03 - 05 February 2014

Sparks in the chamber Mesh support pillars Mesh PCB Read-out strip Sparks between mesh and readout strips may damage the detector and readout electronics and/or lead to large dead times as a result of HV breakdown RD51 Electronics School 03 - 05 February 2014

Resistive MicroMegas chambers To avoid spark effect the readout strips were covered with the 64 µm thick insulator layer with resistive strips on top of it connected to the +HV via discharge resistor and mesh is connected to GND Resistive characteristics of the chambers Resistive strip 0.5-5 MΩ/cm CHAMBER R11 R12 R13 HV resistor (MΩ) 15 45 20 Resistance along strip (MΩ/cm) 2 5 0.5 PCB Read-out strip Insulator Embedded resistor 15-45 MΩ 5mm long +500V Read-out strip PCB RD51 Electronics School 03 - 05 February 2014

First 2D chambers with the “spark protection” resistive strips Resistive MicroMegas chambers -300V First 2D chambers with the “spark protection” resistive strips R16, R17, R18 Pitch: all strips – 250 µm; Width: resistive – 60 µm Y-strips – 100 µm X-strips – 200 µm 5 mm +500V GND 128 µm Y-strips X-strips RD51 Electronics School 03 - 05 February 2014

Standard chamber vs resistive MicroMegas mesh currents and HV drop in neutron beam Gas: Ar:CO2 (85:15) Neutron flux: ≈ 106 n/cm2/sec Standard MM: Large currents Large HV drops, recovery time O(1s) Chamber could not be operated stably R11: Low currents Despite discharges, but no HV drop Chamber operated stably up to max HV HV values Mesh currents RD51 Electronics School 03 - 05 February 2014

Spark signals resistive vs standard Sparks measured directly on readout strips through 50 Ohm Several spark signals plotted on top of each other to enhance the overall characteristics R12 shows 2-3 order of magnitude less signal and shorter recovery time than standard MM -600 -400 -200 0 10 µs RD51 Electronics School 03 - 05 February 2014

Equivalent scheme of resistive MicroMegas chambers -HV Mesh C2 Induced charge Resistive strip C1 C3 Amp R1 Copper strip CA C4 C1 – capacitance Mesh to ground C2 – capacitance R-strip to ground C3 – capacitance R-strip to readout strip C4 – capacitance readout strip to ground CA – input capacitance of preamplifier RD51 Electronics School 03 - 05 February 2014