Modeling hydrocarbon generation / transport In fusion experiments John Hogan Fusion Energy Division Oak Ridge National Laboratory First Meeting Co-ordinated.

Slides:



Advertisements
Similar presentations
Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
Advertisements

ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
EU Plasma-Wall Interaction TF – Meeting FZJ SEWG Chemical Erosion S. Brezinsek TEC 1 Report of the Special Expert Working Group on Chemical.
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
Benchmarking DIVIMP-ERODEPDIF ITER predictions on material mixing using JET results M. Reinelt, K. Schmid, K. Krieger Max-Planck-Institut.
Glenn Bateman Lehigh University Physics Department
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
Spectroscopy of hydrocarbon in low temperature plasmas : Results from JT-60U T. Nakano J apan A tomic E nergy A gency, Ibaraki, Japan. 6-9/11/2006 ITPA.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
The Physics Base for ITER and DEMO Hartmut Zohm Max-Planck-Institut für Plasmaphysik, Garching, Germany EURATOM Association Hauptvortrag given at AKE DPG.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
1E. Tsitrone20th IAEA Vilamoura 1-6/11/2004 Euratom Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention.
Iain D. Boyd University of Michigan Modeling of Ion Sputtering and Product Transport.
Physics of fusion power
Examples of using Langevin equation to solve FP equation.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
Power Extraction Research Using a Full Fusion Nuclear Environment G. L. Yoder, Jr. Y. K. M. Peng Oak Ridge National Laboratory Oak Ridge, TN Presentation.
R. Doerner, IAEA CRP on H in Materials, Vienna, Sept. 26, 2006 Mixed-material studies in PISCES-B R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Recent JET Experiments and Science Issues Jim Strachan PPPL Students seminar Feb. 14, 2005 JET is presently world’s largest tokamak, being ½ linear dimension.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Member of the Helmholtz Association OS2010| Institute of Energy Research–Plasma Physics | Association EURATOM – FZJ Spectroscopy on laser released particles.
Nam-Sik Yoon (Chungbuk National University of Korea) A Dust Charging Model under Tokamak Discharge Conditions 6 th Japan-Korea Workshop on Theory and Simulation.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Model prediction of impurity retention in ergodic layer and comparison with edge carbon emission in LHD (Impurity retention in the ergodic layer of LHD)
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
Tritium Retention in Graphite and Carbon Composites Sandia National Laboratories Rion Causey Sandia National Laboratories Livermore, CA
Investigate Laser induced desorption (LID) of hydrogen retained in co-deposited layers on JT-60 open-divertor tile 20 ps-pulsed Nd:YAG laser for wide laser-intensity.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
TEC Trilateral Euregio Cluster 1 S. Brezinsek Spectroscopic determination of carbon erosion yields and the composition of chemically eroded molecular carbon.
Discussions and Summary for Session 1 ‘Transport and Confinement in Burning Plasmas’ Yukitoshi MIURA JAERI Naka IEA Large Tokamak Workshop (W60) Burning.
J.N. Brooks, A. Hassanein, T. Sizyuk, J.P. Allain
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
D. Tskhakaya et al. 1 (13) PSI 18, Toledo July 2008 Kinetic simulations of the parallel transport in the JET Scrape-off Layer D. Tskhakaya, R.
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
PSI 2008 Toledo May 2008 © Matej Mayer Carbon balance and deuterium inventory from a carbon dominated to a full tungsten ASDEX Upgrade M. Mayer a, V. Rohde.
FOM - Institute for Plasma Physics Rijnhuizen Association Euratom-FOM Diagnostics and Control for Burning Plasmas Discussion All of you.
Background Long term tritium retention is one of the most critical issues for ITER during the tritium phase. It is mandatory to evaluate the long term.
Edge-SOL Plasma Transport Simulation for the KSTAR
Gas inlet position References Experiment 1) W sputtering experiment Aim: study of W erosion for different plasma conditions by aim of spectroscopy reference.
Max-Planck-Institut für Plasmaphysik CRP on ‘Atomic and Molecular Data for Plasma Modelling’, IAEA, Vienna26-28 September 2005 Compilation and Extension.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
L. Moser – FuseNet PhD Event 2015 – Prague Influence of high magnetic field on plasma sputtering of ITER First Mirrors L. Moser, L. Marot, R. Steiner and.
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
Moving fast in fusion reactors: ASCOT – race track for fast ions
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Can we control PMI to reduce erosion or deposition? Effects of excited particles Reflection of excited neutrals, on deposition and erosion Excited molecules.
Introduction to Plasma-Surface Interactions Lecture 5 Sputtering.
JET EDGE2D Modeling using W bundling Jim Strachan EDGE2D/EIRENE fluid ions and (Monte Carlo neutrals) models the pedestal, SOL, and divertor Used (85 publications)
56 th Annual Meeting of the Division of Plasma Physics. October 27-31, New Orleans, LA Using the single reservoir model [3], shown on right, to:
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
DOE Plasma Science Center Control of Plasma Kinetics
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
ITERに係わる原子分子過程 Atomic and Molecular Processes in ITER SHIMADA, Michiya ITER International Team Annual Meeting of Japan Society of Plasma Science and Nuclear.
Studies of impurity migration in TEXTOR by local tracer injection
Multiscale modeling of hydrogen isotope transport in porous graphite
Presentation transcript:

Modeling hydrocarbon generation / transport In fusion experiments John Hogan Fusion Energy Division Oak Ridge National Laboratory First Meeting Co-ordinated Research Program ” Atomic and Molecular Data for Plasma Modelling ” IAEA Vienna International Centre September 26-28, 2005

ITER tritium retention issues G. Federici, ITER GWS PSIF Workshop* (to be published, Physica Scripta) ITER predictions still uncertain due to –chemical erosion yields at high temperature and fluxes –effects of type I ELMs (ablation) –effects of gaps –effects of mixed materials –lack of code validation in detached plasma. T issues will be heavily scrutinised by licensing authorities. Scale-up of removal rate required is Potential options for T removal techniques for ITER. 1)Remove whole co-deposit by: oxidation (maybe aided by RF) ablation with pulsed energy (laser or flashlamp). 2)Release T by breaking C:T chemical bond: Isotope exchange Heating to high temperatures e.g. by laser, or... * “New directions for computer simulations and experiments in plasma–surface interactions for fusion”: Report on the Workshop (Oak Ridge National Laboratory, 21–23 March 2005) J.T. Hogan, P.S. Krstic and F.W. Meyer Nucl Fus 49 (2005) 1202

Fusion applications of hydrocarbon rate data Erosion / re-deposition / tritium retention (DIII-D, Tore Supra, JET examples) - long discharges -> hydrocarbon films - chemical erosion and T inventory Use of presently available data PISCES linear reflex arc (Erhardt-Langer) throat of Tore Supra neutralizer (compare E-L and Janev - Reiter) DIII-D gaps ELMs

Codes in use for erosion/deposition/retention (D Coster, J Hogan PSIF Workshop Summary Nucl Fus 2005) TR - trace impurity in fixed background SC - self-consistent background and impurity solution GO - gyro orbit following (classical diffusion) GC - guiding center fluid (anomalous transport) FL - fluid + kinetic corrections

CD / CH Molecular Band is analyzed to determine the H/D concentration in the divertor (G. Duxbury - Univ Strathclyde) H wall loading first 5 shots Of D-->H changeover H concentration as deduced from the CH-CD Molecular Band Relation between chemical erosion processes and H/D/T retention JET deuterium - hydrogen change-over experiment D Hillis, J Hogan et al J Nucl Mater 2001

Interior view of Tore Supra Tore Supra Full toroidal limiter CIEL  poloidal direction    toroidal direction machine axis

Tore Supra heat, particle flux deposition is strongly influenced by magnetic field ripple (~7%) R Mitteau et al J Nucl Mater 2001.

Sources of BBQ CD 4 Rate Data [W. Langer, A. Erhardt, PPPL Technical Report] #Reaction ProductComment 1e - + CD 4 CD e - M 2CD D + 2 e - M 3CD 3 + D + e - M 4e - + CD 4 + CD 3 + D + + e - NM: = 1/4 R 1 5CD D + e - NM: = 3/4 R 1 6CD 3 + DTot. R 6 +R 7 M for E < 1 eV, Ex (E > 1 eV) = 1/4 R exp 7CD DAs for R 6, R 7 = 3/4 R exp 8e - + CD 3 CD e - CD 3 M Ex (E<15 eV) 9CD D + 2 e - From CD 3 (M) 10CD 2 + D + e - NM, = 3/4 R 3 11e - + CD 3 + CD 2 + D + + e - NM, = 1/3 R 10 M = Measured, NM = Not Measured, Ex = Extrapolated, A = Assumed

Sources of the BBQ CD 4 Rate Data [W. Langer, A. Erhardt] 12CD D + e - NM, = 2/3 R 10 13CD 2 + DTotal M for E < 1 eV, Ex (E>1 eV) neglect other channels 14e - + CD 2 CD e - From CD 2 M(E<200eV) and CD 4 for E> 200eV) 15CD + + D + 2 e - M (CD 2 ) 16CD + D + e - NM, = 1/2 R 3 17e - + CD 2 + CD + D + + eNM, = 1/2 R 16 18CD + + D + e - NM = 1/2 R 16 19CD + DTotal M (E < 1 eV) Ex (E>1eV) neglect other channels 20e - + CDCD e - NM, adopted CD 4 data 21C + + D + 2 e - NM total R 21 +R 22 A=1/2 R 9 ; R 21 =1/2 total 22C + D e - NM, total R 21 +R 22 A= 1/2 R 9 ; R 22 =1/2 total 23C + D + e - NM = 1/4 R 3 24e - + CD + C + D + + e - NM = 1/2 R 23 25C + + D + e - NM = 1/2 R 23 M = Measured, NM = Not Measured, Ex = Extrapolated, A = Assumed

PISCES - A (UCLA) experiments: A. Pospieszczyk, FZ-Juelich Reflex arc linear mirror plasma Spectroscopic arrangement Optical multi channel analyzer

Code - experiment comparison BBQ - Monte Carlo multi-species simulation ( Erhardt-Langer database) OMA ( A. Pospieszczyk, FZ-Juelich)

Schematic diagram of experiment on Tore Supra Midplane Limiter (Phase II) E Gauthier, A Cambe J Hogan et al J Nucl Mater 2003

Model comparison using partial pressure - sensitivity to sputtering model

Deuteron impact charge exchange data [Alman, Ruzic] D + + C n D m -->D + C n D4 + ReactionProduct Rate Known (10 -9 cm 3 /s)(total) CD 4 D + + CD 4 D + CD D 2 + CD D + + CD 3 D + CD D 2 + CD D + + CD 2 D + CD D 2 + CD D + + CD D + CD C 2 D 2 D + + C 2 D 2 D + C 2 D D 2 + C 2 D D + + C 2 D D + C 2 D

Janev-Reiter database rates have been implemented in BBQ. A comparison, with the same background plasma conditions, for the Tore Supra pump limiter case, shows significant differences in comparison with the Erhardt-Langer rates Janev-Reiter profiles

DIII-D intrinsic impurities before/after new tile installation Some evidence of T-dependent processes

CASTEM-2000 simulation of time-dependent carbon generation from simulated DIII-D localized source

Solps simulation of CIII emission seen by 240par (lower divertor) camera W Meyer, M Fenstermacher, M Groth LLNL

ELM heat flux mitigation by Injection of extrinsic impurities

Chemical sputtering of carbon materials due to combined bombardment by ions and atomic hydrogen W Jacob, C. Hopf, M. Schlüter, T. Schwarz-Selinger Max-Planck-Institut für Plasmaphysik Garching

CONCLUSIONS Intrinsic (carbon) impurity sources play a key role in ITER, both as regards erosion and for tritium retention The ITER problem (addressed also by JET) requires a decision about the first wall material - carbon or an alternative Development of validated models for C generation, deposition and retention requires experimental comparison: this typically introduces multiple uncertainties; e.g., sputtering yield models vs hydrocarbon break-up rates ITER relevant experimental scenarios involve fast timescale ELM events, for which spectroscopy is an key tool The importance of hydrocarbon generation processes has been seen in many experiments, and thus a quantitative, evaluated, integrated model for break-up processes in the plasma is needed.