Interactions of Hazardous Materials This presentation was prepared to provide some background or refresher notes on selected & limited topics in beginning.

Slides:



Advertisements
Similar presentations
Organic Chemistry Chapter
Advertisements

Organic Chemistry IB.
Chapter 24: Organic chemistry
Organic Chemistry.
Chapter 9 Carbon & Its Compounds.
Section 20.1 Saturated Hydrocarbons 1.To understand the types of bonds formed by the carbon atom 2.To learn about the alkanes 3.To learn about structural.
Chemistry for Changing Times 12th Edition Hill and Kolb
Chapter 9 Organic Chemistry John Singer, Jackson Community College Chemistry for Changing Times, Thirteenth Edition Lecture Outlines © 2013 Pearson Education,
Organic Chemistry The study of carbon based compounds with some exceptions. The exceptions are carbides, carbonates and oxides.
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 12 Organic Chemistry: The Infinite Variety of Carbon Compounds
Chapter 10 Introduction to Organic Chemistry: Alkanes
Done by Lecturer: Amal Abu- Mostafa.  Refinery and tank storage facilities, like this one in Texas, are needed to change the hydrocarbons of crude oil.
Organic Compound Nomenclature
Organic Chemistry Alkenes and Alkynes. Double carbon bond Triple carbon bond.
Organic chemistry.
Organic Chemistry study of carbon to carbon compounds.
Introduction to Hydrocarbons
1 Organic Chemistry Organic chemistry is the branch of chemistry that deals with the study of carbon based compounds. Bonds between carbon atoms are covalent;
ALKANES Contain single bonds CH 3 -CH 2 -CH 2 -CH 3 Saturated hydrocarbon Substitution reaction.
Rudolf Žitný, Ústav procesní a zpracovatelské techniky ČVUT FS 2010 This course is approximately at this level CHEMISTRY E CH10 ORGANIC CHEMISTRY.
Functional Groups Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings 1.
Chapter 22: Hydrocarbon Compounds
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Introduction to Organic Chemistry Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
ORGANIC CHEMISTRY Any molecule that contains the element CARBON.
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Unit 13- Organic Chemistry
CHAPTER 23 ORGANIC CHEMISTRY. The Nature of Organic Molecules Carbon is tetravalent. It has four outer-shell electrons (1s 2 2s 2 2p 2 ) and forms four.
Chapter 9 Aldehydes and Ketones Chemistry 20. Carbonyl group C = O Aldehydes Ketones Carboxylic acids Esters.
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Organic Chemistry Chapter 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Hydrocarbon Derivatives Chemistry 11. Hydrocarbon Derivatives Are formed when one or more hydrogen atoms is replaced by an element or a group of elements.
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Organic Chemistry Larry Scheffler Lincoln High School Portland, OR.
Compounds of Carbon Chapter 9. Carbon Over seven million compounds containing carbon are known. Over seven million compounds containing carbon are known.
Chapter 10 Introduction to Organic Chemistry: Alkanes 10.1 Organic Compounds 1 Copyright © 2009 by Pearson Education, Inc.
Ch 22: Organic Chemistry.
Hydrocarbon Derivatives
1 Chapter 22 Organic Chemistry!!!!! Chapter 6 in rxn workbook Chapter 16 in PR.
Chapter 17: Aldehydes and Ketones -C-H = = O O -C- = = O O < Aldehydes. Cinnamaldehyde < Ketones. Acetone.
Organic Chemistry Chapter 7.
Organic Chemistry Mr. Calmer Lawndale High School.
Chapter 22 Organic chemistry.  chemical compounds consisting primarily of carbon carbon  original definition came from the misperception that these.
Organic Chemistry Carbon is the basis of organic chemistry Carbon has the ability to make 4 covalent bonds. Carbon can repeatedly make covalent bonds to.
Chapter Twelve Introduction to Organic Chemistry: Alkanes James E. Mayhugh Copyright © 2010 Pearson Education, Inc. Fundamentals of General, Organic and.
INTRODUCTORY CHEMISTRY INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin 1 Chapter 19 © 2011 Pearson Education,
Chapter 19 Page 743. Game Plan Day 1: Lesson 1 Hydrocarbons….Make “booklet” Day 2: Lesson 2: Functional Groups Lab: Esters Day 3: Practice naming alkanes,
Chapter 20 Organic Chemistry. Organic Compounds Organic compounds all contain carbon –CO, CO 2, carbonates are inorganic –Other common elements found.
Chapter Twelve Introduction to Organic Chemistry: Alkanes James E. Mayhugh Copyright © 2010 Pearson Education, Inc. Fundamentals of General, Organic and.
Organic compounds Contain Elements C (Four covalent bonds) H (One covalent bond) Halogen (One covalent bond) O (Two covalent bonds) S (Two covalent bonds)
TOPIC 11 REVIEW BOOK TABLES P, Q AND R Organic Chemistry.
Interactions of Hazardous Materials
Basic Organic Chemistry
Organic Chemistry The study of the structure, reaction, and synthesis of compounds that consist mostly of carbon and hydrogen Organic compounds can contain.
Simple Organic Chemistry
Organic Chemistry IB.
Organic Chemistry Chapter 24
Chapter 17 Aldehydes and Ketones
Chapter 24 Organic Chemistry
Introduction Organic chemistry is the study of carbon compounds (generally hydrocarbons). Animals, plants, and other forms of life consist of organic compounds.
Carbon: Not Just Another Element
Carbon Chemistry Carbon is unusual
2.1 UNSATURATED HYDROCARBONS
Organic Chemistry.
Organic Chemistry An Introduction.
Aim: How are carbon compounds named and drawn?
Organic Chemistry PrductiveStudent.
Organic Chemistry.
Presentation transcript:

Interactions of Hazardous Materials This presentation was prepared to provide some background or refresher notes on selected & limited topics in beginning Organic Chemistry that may be of help for the chemistry portion of the BOS 3640 course. Your textbook is needed for some parts of this presentation. References: Meyer, E. (2010). Chemistry of Hazardous Materials. (5 th edition). NJ: Pearson Kotz, J.C. et al (2003). Chemistry & Chemical Reactivity. (5 th edition). USA: Thomson Learning Pine, S.H. et al (1989). Organic Chemistry, (4 th edition). NY: McGraw-Hill Intro to Organic Chemistry Prepared by: Dolores Gough, P.E. George Gough, P.E., CSP

Basic Features of Atoms (review from Unit 1 PP presentation) Atom: smallest particle of element; composed of smaller particles known as electrons, protons, neutrons Electrons: negative particles responsible for reactivity; charge of -1 Protons: positively charged particles; charge of +1 Neutrons: neutral particles; no charge Nucleus P+ N e -- Protons and neutrons reside within the nucleus Electrons reside in designated regions surrounding the nucleus called atomic orbitals

Carbon has four (4) electrons in the outer shell that need to bond for stability. Carbon can also share electrons with other carbon atoms to form the following types of carbon bonds: C – C (single bond) C = C (double bond) C Ξ C (triple bond) Organic Chemistry – chemistry of compounds containing one or more carbon atoms. However, the hydrogen atom is almost always present in these compounds ( shown in next slide ). 6 P 6 N Atomic Structure of Carbon -

Carbon electron sharing with Hydrogen: Hydrogen has one (1) electron in its outer shell that can share with the C to form covalent bonds. However, C needs to share all 4 electrons in its outer shell. Example: if all four electrons were shared with H, CH4 is formed. H H C H or CH 4 (methane) H 1 P 0 N Atomic Structure of Hydrogen - Hydrocarbons (HC) are compounds whose molecules consist of only carbon and hydrogen atoms.

Carbon – Carbon Single Bond: Alkanes: have general formula of C n H 2n+2 where n = number of carbon atoms Example: Butane has 4 carbons, all single bonds as shown: H H H H I I I I H - C - C – C - C - H C 4 H 10 (see Table 12.1) I I I I H H H H Cycloalkanes; same as alkane but the first and last C are linked (closed). In naming them, just add “cyclo” to the alkane name. (Examples – see Sec B) Carbon = Carbon Double Bond: Alkenes or Olefins: have general formula of C n H 2n Example: Butene has 4 carbons and at least 1 double bond H H H H I I I I H - C - C = C - C – H or H – C = C – C – C - H I I I I I I I H H H H H H H C 4 H 8

Carbon Ξ Carbon Triple Bond: Alkynes: have general formula of C n H 2n-2 Example: Butyne has 4 carbons and at least 1 triple bond H H H H I I I I H - C - C Ξ C - C – H or H – C ΞC – C – C - H I I I I H H H H C 4 H 6 General Properties/Characteristics: Alkanes (paraffins or saturated HC): relatively stable to chemical reactions. Low molecular weight alkanes are gases or liquids, high MW are solids. Alkenes (olefins ): unsaturated HC because they don’t have the maximum number of atoms each carbon is able to accommodate; physical properties are closely related to those of the corresponding alkanes. Alkynes (unsaturated HC); physical properties are similar to those of alkanes and alkenes.

IUPAC System of Nomenclature IUPAC (International Union of Pure and Applied Chemistry – used for naming complex hydrocarbons When a hydrogen atom is removed from an alkane, the resulting group is called alkyl group or alkyl substituent. See Table 12.2 (page 525) for common alkyl substituents ) Rules for naming an alkane (page 526) Example: CH 3 - CH 2 – CH - CH 2 - CH 3 I CH 3 3-methyl pentane

IUPAC SYSTEM (cont): Rules for naming alkenes ( 1 double bond ), dienes ( 2 double bonds ), tienes ( 3 double bonds ) & “cyclos” (page 531) Examples: CH 3 CH = CHCH 2 CH 3 2- pentene CH 2 = CH – CH = CH 2 1, 3 - butadiene Rules for naming alkynes (page 535) Examples: CH 3 CH 2 C Ξ CCH 2 CH 3 3- hexyne CH Ξ CCH 3 1- propyne

Aromatic Hydrocarbons: Regarded as compounds whose molecules are composed of one or more special rings of carbon atoms. Benzene – simplest aromatic hydrocarbon. C 6 H 6 Other common aromatic compounds: Toluene (or methylbenzene) Xylene 1,4 dimethyl benzene (para-xylene) 1,3 dimethylbenzene (meta-xylene) 1, 2 dimethylbenzene (ortho-xylene)

Polynuclear Aromatic Hydrocarbons (PAHs): Two or more mutually-fused benzene rings per molecule (when a pair of carbon atoms is shared and the bond between them). Examples: Naphthalene: colorless solid having odor of mothballs; poses chronic respiratory hazard to humans; links exposure with onset of cancerous growths. Anthracene (C 14 H 10 ): component of coal-tar.

Functional Groups: In a hydrocarbon, one or more hydrogen atoms may be substituted with another atom or group of atoms. This atom or group of atoms is called the “functional group” and this group determines many of an organic compound’s characteristic chemical properties. It identifies an organic compound as alcohol, ether, aldehyde, etc. There are over 100 functional groups; some of the important ones are covered in the book and listed in Table Let us take some examples: Functional group: hydroxyl (-OH) Class of organic compound: alcohol General formula: R-CH 2 -OH Functional group: oxy (-O-) Class of organic compound: ether General formula: R-O-R’ where: R and R’ are arbitrary alkyl or aryl substituent

Alcohols Organic compounds derived by substituting one or more hydrogen atoms in hydrocarbon molecule with hydroxy group (-OH) General chemical formula of simple alcohol is R-OH Examples: H I Methyl alcohol H – C – O – H or CH 3 OH (methanol) I H ,5 dimethyl 3-hexanol (methyl)

Ethers Organic compounds that are highly volatile, flammable liquids Produce organic peroxides by reacting with atmospheric oxygen catalyzed by light Highly reactive, potentially explosive General formula is R-O-R’ Example: Diethyl ether CH 3 CH 2 - O - CH 2 CH 3 (ethyl) (ethyl)

Aldehydes and Ketones \ Both contain the carbonyl group C = O / Aldehydes - h ave carbonyl group located at end of chain of carbon atoms. Ketone -has carbonyl group located at nonterminal position within chain. Examples of aldehyde: formaldehyde or methanal (CH 2 O); acetaldehyde or ethanal (CH 3 CHO; 2-propenal or acrolein (CH 2 =CHCHO) Examples of ketone: acetone or 2-propanone (CH 3 COCH 3 ) methyl ethyl ketone or 2-butanone (CH 3 COCH 2 CH 3 )

Organic Acids Organic compounds containing the carboxyl group (-COOH); so they are also called carboxylic acids. They are weak acids; inherently corrosive, water-soluble with characteristic odors. General formula is R – COOH or In the IUPAC nomenclature, the suffix – oic acid is used to designate carboxylic acids; but when the functional group (-COOH) is connected to a cyclic structure, - carboxylic acid becomes the appropriate suffix. Examples: Methanoic acid (or formic acid): H COOH Ethanoic acid (or acetic acid): CH 3 COOH Propanoic acid (or propionic acid): CH 3 CH 2 COOH connected to cyclic structure: 2- hydroxybenzene carboxylic acid (or salicylic): o-HOC 6 H 4 COOH

Peroxo-Organic Compounds Organic hydroperoxides, organic peroxides Many compounds unstable Used to induce polymerization, process essential to production of plastics Source: Meyer (2010)

More details and other common hazardous organic chemicals are in the textbook