Ignazio Scimemi Universidad Complutense de Madrid (UCM) In collaboration with A. Idilbi, M. García Echevarría A.I., I.S. Phys. Lett. B695 (2011) 463, M.G.E.,

Slides:



Advertisements
Similar presentations
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Advertisements

Academia Sinica, Taipei
Some questions on quantum anomalies Roman Pasechnik Moscow State University, Moscow & Bogoliubov Lab of Theoretical Physics, JINR, Dubna 46-th Cracow School.
Polarized structure functions Piet Mulders ‘Lepton scattering and the structure of nucleons and nuclei’ September 16-24, 2004
Max-Planck-Institute for Physics Werner-Heisenberg-Institut Munich André H. Hoang 6th Vienna Central European Seminar, Nov , 2009 Soft-Collinear-Effective.
Nonperturbative Effects from Soft-Collinear Effective Theory Christopher Lee Institute for Nuclear Theory, University of Washington 12 January 2006.
Iain Stewart MIT Iain Stewart MIT Nonleptonic Decays and the Soft Collinear Effective Theory Super B Factory Workshop, Hawaii, 2004.
Resummation of Large Logs in DIS at x->1 Xiangdong Ji University of Maryland SCET workshop, University of Arizona, March 2-4, 2006.
1 SCET for Colliders Matthias Neubert Cornell University LoopFest V, SLAC – June 21, 2006 Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)
Ahmad Idilbi Uni. Regensburg TUM November 30, 2011 M. G. Echevarria, A. Idilbi, I. Scimemi, arXive: : [hep-ph] M. G. Echevarria, A. Idilbi, I.
From Factorization to Resummation for Single Top Production at the LHC with Effective Theory Chong Sheng Li ITP, Peking Unversity Based on the work with.
Wigner Functions; P T -Dependent Factorization in SIDIS Xiangdong Ji University of Maryland — COMPASS Workshop, Paris, March 1-3, 2004 —
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #14.
Method of Regions and Its Applications The Interdisciplinary Center for Theoretical Study, USTC 1 Graduate University of the CAS Deshan Yang.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland Shanghai Jiao Tong University Parton Physics on a Bjorken-frame lattice July 1, 2013.
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
9/17/20151 Probing the Dense Medium in Cold Nuclei -- Gluon Saturation at small-x Bowen Xiao (CCNU) Feng Yuan (LBNL)
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
1 Transverse weighting for quark correlators QCD workshop, JLAB, May 2012 Maarten Buffing & Piet Mulders
Breakdown of NRQCD Factorization ?? J. P. Ma Institute of Theoretical Physics, Beijing 北京 May Taipei Summer Institute on Strings, Particles.
Single (transverse) Spin Asymmetry & QCD Factorization Single (transverse) Spin Asymmetry & QCD Factorization Xiangdong Ji University of Maryland — Workshop.
A Short Introduction to the Soft-Collinear Effective Theory Sean Fleming Carnegie Mellon University |V xb | and |V tx | A workshop on semileptonic and.
May 18-20, 2005 SIR05 JLab 1 P ? Dependence of SSA -- from nonpert. to pert. Feng Yuan, RBRC, Brookhaven National Laboratory References: Ji, Ma, Yuan,
11/5/20151 Energy Evolution of Sivers asymmetry in Hard Processes Feng Yuan Lawrence Berkeley National Laboratory.
Zhongbo Kang Los Alamos National Laboratory QCD structure of the nucleon and spin physics Lecture 5 & 6: TMD factorization and phenomenology HUGS 2015,
Unintegrated parton distributions and final states in DIS Anna Stasto Penn State University Work in collaboration with John Collins and Ted Rogers `
Beta-function as Infrared ``Phenomenon” RG-2008 (Shirkovfest) JINR, Dubna, September Oleg Teryaev JINR.
Quantum dynamics of two Brownian particles
11/28/20151 QCD resummation in Higgs Boson Plus Jet Production Feng Yuan Lawrence Berkeley National Laboratory Ref: Peng Sun, C.-P. Yuan, Feng Yuan, PRL.
QCD-2004 Lesson 2 :Perturbative QCD II 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian and Feynman rules.
PQCD mechanisms for single (transverse) spin asymmetry in Drell-Yan production PQCD mechanisms for single (transverse) spin asymmetry in Drell-Yan production.
Color Glass Condensate HIM MEETING( 광주 ) Dec. 4, 2004.
Resummation of Large Endpoint Corrections to Color-Octet J/  Photoproduction Adam Leibovich University of Pittsburgh 10/17/07 With Sean Fleming and Thomas.
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Theoretical tools for non-leptonic B decays
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
CKM, Dec Aneesh Manohar & I.S. hep-ph/ Arnesen, Ligeti, Rothstein, & I.S. hep-ph/ ; Lange, Manohar, & I.S. hep-ph/0? ? ?001 Iain Stewart.
International Workshop on Transversity: New Developments in Nucleon Spin Structure June 2004 Color Gauge Invariance in Hard Processes Vrije Universiteit.
TMDPDF: A proper Definition And Its Evolution Ahmad Idilbi University Of Regensburg QCD Evolution 2012 Workshop Jefferson LAB, May 15 M. G. Echevarria,
2/10/20161 What can we learn with Drell-Yan in p(d)-nucleus collisions Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
1 Sudakov and heavy-to-light form factors in SCET Zheng-Tao Wei Nankai University , KITPC, Beijing.
Single Transverse-Spin Asymmetries and Twist-3 Factorization J.P. Ma, ITP, Beijing Weihai,
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Introduction to Flavor Physics in and beyond the Standard Model Enrico Lunghi References: The BaBar physics book,
April 20-24, 2006 DIS Soft Gluon Ressumation in Effective Field Theory Feng Yuan, RBRC, Brookhaven National Laboratory References: Ildibi, Ji, Yuan,
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
Perturbative QCD in Nuclear Environment Jianwei Qiu Iowa State University Student Lecture at Quark Matter 2004 Oakland – January 11, 2004 Table of Contents:
I. Scimemi, with Ambar Jain and Iain Stewart, MIT, Cambridge 1 EF07,Paris.
Structure functions are parton densities P.J. Mulders Vrije Universiteit Amsterdam UIUC March 2003 Universality of T-odd effects in single.
11/19/20161 Transverse Momentum Dependent Factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
NGB and their parameters
Computing gluon TMDs at small-x in the Color Glass Condensate
Lecture 2 Evolution and resummation
Semi-inclusive DIS at Small-x
Unique Description for SSAs in DIS and Hadronic Collisions
Adnan Bashir, UMSNH, Mexico
Computing gluon TMDs at small-x in the Color Glass Condensate
Adnan Bashir, UMSNH, Mexico
TMDs in nuclei Jian Zhou Temple University
The top quark jet mass at 2 loops
Unique Description for Single Transverse Spin Asymmetries
Heavy-to-light transitions on the light cone
Singluarity and Gauge Link in Light Cone Gauge
Unifying the Mechanisms for SSAs in Hard Process
Single spin asymmetries in semi-inclusive DIS
Factorization in some exclusive B meson decays
Semi-inclusive hadronic B decays at the endpoint
Presentation transcript:

Ignazio Scimemi Universidad Complutense de Madrid (UCM) In collaboration with A. Idilbi, M. García Echevarría A.I., I.S. Phys. Lett. B695 (2011) 463, M.G.E., A.I., I.S. arXive: [hep-ph] and work in progress

 SCET and its building blocks  Gauge invariance for covariant gauges  Gauge invariance for singular gauges (Light-cone gauge)  A new Wilson line in SCET: T  The origin of T-Wilson lines in SCET Lagrangian: gauge conditions for different sectors  Phenomenology  Conclusions

 SCET (soft collinear effective theory) is an effective theory of QCD  SCET describes interactions between low energy,”soft” partonic fields and collinear fields (very energetic in one light-cone direction)  SCET and QCD have the same infrared structure: matching is possible  SCET helps in the proof of factorization theorems and identification of relevant scales

4 SCET: Kinematics Light-cone coordinates Bauer, Fleming, Pirjol, Stewart, ‘00 Integrated out with EOM U-soft Soft modes do not interact with (anti) collinear or u-soft In covariant gauge

5 SCET Leading order Lagrangian (n-collinear) Light-cone coordinates Bauer, Fleming, Pirjol, Stewart, ‘00 The new fields do not interact anymore with u-soft fields

6 SCET

SCET building blocks The SCET Lagrangian is formed by gauge invariant building blocks. Gauge Transformations: Is gauge invariant

Factorization Theorem For DIS PDF In Full QCD PDF In SCET: is gauge invariant because each building block is gauge Invariant Factorization In SCET [Neubert et.al, Manohar] [Stewart et.al]

Factorization Theorem For SIDIS in QCD: Covariant gauge “Naïve” Transverse Momentum Dependent PDF (TMDPDF): In Full QCD And At Low Transverse Momentum: Analogous to the W in SCET Ji, Ma,Yuan ‘04 This result is true only in “regular” gauges: Here all fields vanish at infinity

Transverse Gauge Link in QCD For gauges not vanishing at infinity [Singular Gauges] like the Light-Cone gauge (LC) one needs to introduce an additional Gauge Link which connects with to make it Gauge Invariant In LC Gauge This Gauge Link Is Built From The Transverse Component Of The Gluon Field: Ji, Ma, Yuan Ji, Yuan Belitsky, Ji, Yuan Cherednikov, Stefanis

Gauge Invariant TMDPDF In SCET? Are TMDPDF fundamental matrix elements in SCET? Are SCET matrix elements gauge invariant? Where are transverse gauge link in SCET?

Gauge invariance of SCET building blocks We calculate at one-loop in Feynman Gauge and In LC gauge In Feynamn Gauge

Gauge invariance of SCET building blocks We calculate at one-loop in Feynman Gauge and In LC gauge In LC Gauge [Bassetto, Lazzizzera, Soldati] Canonical quantization imposes ML prescription

Gauge invariance of SCET building blocks We calculate at one-loop in Feynman Gauge and In LC gauge In LC Gauge

Gauge invariance of SCET building blocks We calculate at one-loop in Feynman Gauge and In LC gauge In LC Gauge The gauge invariance is ensured when The result of this is independent of  and has got only a single pole. Zero-bin subtraction is nul in ML.

The SCET matrix element is not gauge invariant. Using LC gauge the result of the one-loop correction depends on the used prescription.

In order to restore gauge invariance we have to introduce a new Wilson line, T, in SCET matrix elements And the new gauge invariant matrix element is

The T-Wilson Line In covariant gauges, so we recover the SCET results In LC gauge

The T-Wilson Line All prescription dependence cancels out and gauge invariance is restored no matter what prescription is used Covariant GaugesIn All Gauges

PrescriptionC∞ +i00 -i01 PV1/2 Let us consider the pole part of the interesting integral with or the PV prescription. The result is And in PV the result does not have any imaginary part. The gauge invariance is restored either with the T with a prescription dependent factor OR with zero-bin Subtraction!! The values of this constant depend also on the convention for inner/outer moments

Is there a way to understand the T-Wilson lines from the SCET Lagrangian? An example, the quark form factor: from QCD to SCET in LCG The T-Wilson line is born naturally in One loop matching.

In the canonical quantization of of the gauge field (Bassetto et al.) We define And we can show

In SCET-I only collinear and u-soft fields. The first step to obtain the SCET Lagrangian is integrating out energetic part of spinors And then applying multipole expansion, Where U-soft field do not give rise to any transverse gauge link!! There are no transverse u-soft fields and they cannot depend on transverse coordinates!!

Now the degrees of freedom are just collinear and soft No interaction is possible for on-shell states Is this true in every gauge?

The gauge ghost however acts only on some momentum components Thus the covariant derivative is The decoupling of soft fields requires

The new SCET-II Lagrangian is

TMDPDF Drell-Yan at low Pt [Becher,Neubert] Higgs production at low Pt [Mantry,Petriello] Beam functions [Jouttenus,Stewart, Tackmann,Waalewijn] Heavy Ion physics – Jet Broadening [Ovanesyan,Vitev ] …

Factorization Theorem For DIS PDF In Full QCD PDF In SCET: is gauge invariant because each building block is gauge Invariant Factorization In SCET [Neubert et.al] [Stewart et.al]

Factorization Theorem For SIDIS in QCD: Covariant gauge “Naïve” Transverse Momentum Dependent PDF (TMDPDF): In Full QCD And At Low Transverse Momentum: Analogous to the W in SCET Ji, Ma,Yuan ‘04 This result is true only in “regular” gauges: Here all fields vanish at infinity  Is renorrmalization scale;  is a rapidity cut-off

Transverse Gauge Link in QCD For gauges not vanishing at infinity [Singular Gauges] like the Light-Cone gauge (LC) one needs to introduce an additional Gauge Link which connects with to make it Gauge Invariant In LC Gauge This Gauge Link Is Built From The Transverse Component Of The Gluon Field: Ji, Ma, Yuan Ji, Yuan Belitsky, Ji, Yuan Cherednikov, Stefanis

TMDPDF We Can Define A Gauge Invariant TMDPDF In SCET (And Factorize SIDIS)

Drell-Yan At Low P T Introduce Gauge Invariant Quark Jet: The TMDPDF Is Indeed Gauge Invariant.

Collinear Anomaly Notice That The Cross-Section Is Independent Of The Renormalization Scale (RG Invariance). For Vanishing Soft Function, The Product Of Two TMDPDFs Has to Be Logarithmically Dependent On The Renormalization Scale. This is Impossible Unless There Is Anomaly. Also (Up To Three Loop Calculation!)

Origin Of Collinear Anomaly In The Absence Of Soft Interactions Different Collinear Sectors Do Not Interact So There Is No Way To Generate The Q-Dependence Classically Each Collinear Lagrangian Is Invariant Under Rescaling of Collinear Momentum. For TMDPDF Quantum Loop Effects Needs Regulation Then Classical Invariance Is Lost However The Q-Dependence Is Obtained

The TMDPDF Is Ill-Defined And We need To Introduce New Set Of NP Matrix Elements The Analysis Of Becher-Neubert Ignores Two Notions: Transverse Gauge Links And Soft-Gluon Subtraction Needed To Avoid Double Counting! (Currently Investigated.) Re-factorization Into The Standard PDF

Application To Heavy-Ion Physics D´Eramo, Liu, Rajagopal In LC Gauge The Above Quantity Is Meaningless. If We Add To It The T-Wilson line Then We Get A Gauge Invariant Physical Entity.

Conclusions The usual SCET building blocks have to be modified introducing a New Gauge Link, the T-Wilson line. Using the new formalism we get gauge invariant definitions of non-perturbative matrix elements. In particular the T is compulsory for matrix elements of fields separated in the transverse direction. These matrix elements are relevant in semi-inclusive cross sections or transverse momentum dependent ones. It is possible that the use of LC gauge helps in the proofs of factorization. The inclusion of T is so fundamental. Work in progress in this direction.

Conclusions It is definetely possible to understand the origin of T- Wilson lines in a Lagrangian framework for EFT. Every sector of the SCET can be appropriately written in LCG. The LCG has peculiar property for loop calculation and can avoid the introduction of new ad-hoc regulators There is a rich phenomenology to be studied… so a lot of work in progress!! THANKS!