Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,

Slides:



Advertisements
Similar presentations
How Are Electrons Arranged?
Advertisements

Mössbauer Spectroscopy under Magnetic Field to Explore the Low Temperature Spin Structure in a Molecular Layered Ferrimagnet A. Bhattacharjee, P. Gütlich.
Bonds.
investigated by means of the Mössbauer Spectroscopy
Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Fractal behavior of the BCC/FCC phase separation in iron-gold alloys Artur Błachowski 1, Krzysztof Ruebenbauer 1, Anna Rakowska 2,3 1 Mössbauer Spectroscopy.
0 - 0.
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Progress in the study of high T c electron doped Ca 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 and Ca 10 (Pt 4 As 8 )(Fe 2 As 2 ) 5 superconductors Ni University of.
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
PM Chemical Composition Jiří Smolík, Jaroslav Schwarz Institute of Chemical Process Fundamentals AS CR, Praha.
Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
Division of Materials Science & Engineering
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Photons muons neutrons Tuning the static spin-stripe phase and superconductivity in La 2-x Ba x CuO 4 (x = 1/8) by hydrostatic pressure Zurab Guguchia.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
SDW Induced Charge Stripe Structure in FeTe
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Superconductivity in Zigzag CuO Chains
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
High Temperature Copper Oxide Superconductors: Properties, Theory and Applications in Society Presented by Thomas Hines in partial fulfillment of Physics.
The Ising Model of Ferromagnetism by Lukasz Koscielski Chem 444 Fall 2006.
Magnetic transition in the Kondo lattice system CeRhSn2
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Sept. 14 th 2004 Montauk, Long Island, NY Jason S. Gardner NIST, Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
D :06–4:18 PM Physikon Research  Notre Dame  Arizona State  NJIT Isotope Effect in High-T C Superconductors Dale R. Harshman Physikon Research.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Model of magnetostriction Magnetoelastic behavior of rare earth based intermetallics in high magnetic fields up to 33 T M. Doerr a, M. Rotter b, J. Brooks.
The iron-pnictide/chalcogenide (Fe-Pn/Ch) compounds have attracted intense interest recently, largely due to the observation of high-temperature superconductivity.
Spectroscopy with a Twist Infrared magneto-polarization measurements John Cerne, University at Buffalo, SUNY, DMR Hall conductivity in the high.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Emergent Nematic State in Iron-based Superconductors
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Superconductivity and magnetism in iron-based superconductor
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Magnetism of the regular and excess iron in Fe1+xTe
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
Hyperfine fields of Lanthanides (and Actinides) in Fe: preliminary results and interpretations Nuclear condensed matter physics University of Leuven D.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Electric quadrupole interaction in cubic BCC α-Fe
YTTRIUM SUBSTITUTED IRON-BASED SUPERCONDUCTORS
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
References La1111, 4.2 K, H//c and H//ab: M. Kidszun et al. Critical Current Scaling and Anisotropy in Oxypnictide Superconductors, Phys. Rev. Lett. 106,
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Spin-orbit coupling and coupled charge-spin-orbital state in iridates
Presentation transcript:

Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3, M.A. Green3,4 1Mössbauer Spectroscopy Laboratory, Pedagogical University, Kraków, Poland 2Division of Physics of Crystals, Institute of Physics, Silesian University, Katowice, Poland 3NIST Center for Neutron Research, NIST, Gaithersburg, U.S.A. 4Department of Materials Science and Engineering, University of Maryland, U.S.A. --------------------------------------------------------------------------------------------------------------------------------- IX Ogólnopolskie Seminarium Spektroskopii Mössbauerowskiej OSSM’2012, Lublin - Kazimierz Dolny, 10-13 czerwca 2012

Fe-based Superconducting Families pnictogens: P, As, Sb chalcogens: S, Se, Te 1111 122 111 11 LnFeAsO(F) AFe2As2 LiFeAs FeTe(Se,S) Ln = La, Ce, Pr, Nd, Sm, Gd … A = Ca, Sr, Ba, Eu Tc max = 56 K 38 K 18 K 15 K

Fe1+xTe x = 0.04 – 0.18 x = 0.06 , 0.10 , 0.14 , 0.18 E.E. Rodriguez et al., Phys. Rev. B 84 064403 (2011)

Fe1+yTe1-xSex Fe1+yTe1-xSx Parent Compound Fe1+yTe Doped Compounds → Superconductors y ≈ 0 Fe1+yTe1-xSex Fe1+yTe1-xSx K. Katayama et al., J. Phys. Soc. Japan 79 113702 (2010) Y. Mizuguchi et al., J. Appl. Phys. 109 013914 (2011)

Alcoholic beverages induce superconductivity in FeTe1−xSx K. Deguchi et al., Supercond. Sci. Technol. 24 055008 (2011)

Magnetic-crystallographic phase diagram of the Fe1+xTe E.E. Rodriguez et al., Phys. Rev. B 84 064403 (2011) S. Röler et al., Phys. Rev. B 84 174506 (2011) G.F. Chen et al., Phys. Rev. B 79 140509(R) (2009) 

Fe1.06Te

Fe1.10Te

Fe1.14Te

Fe1.18Te

Fe1+xTe x=0.06 x=0.10 x=0.14 x=0.18 65 K 4.2 K

Square root of the mean squared amplitude of SDW versus temperature

Conclusions Despite existence of the single crystallographic site for the excess iron one sees at least three different kinds of these atoms. Such situation could occur due to the partial filling of the available interstitial sites by iron and due to some ordering of the iron atoms on these sites. The site with the highest magnetic hyperfine field is likely to contain almost isolated ions, i.e., surrounded by the vacancies on the interstitial sites. The magnetism of the excess iron and SDW are coupled one with another. Both kinds of magnetism disappear at the same transition temperature. The critical exponent of the mean squared amplitude of SDW versus temperature indicates that the universality class is close to the (1, 2) class, i.e. the one dimension of the spin space (Ising model) and two spatial dimensions (Fe-Te layers). Interstitial iron has relatively large localized magnetic moment at least for the site with the highest hyperfine field. These moments interact strongly with the electrons having ability to form Cooper pairs and prevent appearance of the superconductivity. One has to remove interstitial iron to have a chance to get superconducting material.

K. Deguchi et al., arXiv:1204.0190 (2012) Clarification as to why alcoholic beverages have the ability to induce superconductivity in Fe1+dTe1-xSx K. Deguchi et al., arXiv:1204.0190 (2012) ”We found that the mechanism of inducement of superconductivity in Fe1+dTe1-xSx is the deintercalation of excess Fe from the interlayer sites.” Dziękuję za uwagę i na zdrowie! 