Constraint Satisfaction over a Non-Boolean Domain Approximation Algorithms and Unique Games Hardness Venkatesan Guruswami Prasad Raghavendra University.

Slides:



Advertisements
Similar presentations
Hardness of Reconstructing Multivariate Polynomials. Parikshit Gopalan U. Washington Parikshit Gopalan U. Washington Subhash Khot NYU/Gatech Rishi Saket.
Advertisements

How to Round Any CSP Prasad Raghavendra University of Washington, Seattle David Steurer, Princeton University (In Principle)
A threshold of ln(n) for approximating set cover By Uriel Feige Lecturer: Ariel Procaccia.
Inapproximability of MAX-CUT Khot,Kindler,Mossel and O ’ Donnell Moshe Ben Nehemia June 05.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Dana Moshkovitz MIT Joint work with Subhash Khot, NYU 1.
Approximating NP-hard Problems Efficient Algorithms and their Limits Prasad Raghavendra University of Washington Seattle.
Gillat Kol joint work with Irit Dinur Covering CSPs.
MaxClique Inapproximability Seminar on HARDNESS OF APPROXIMATION PROBLEMS by Dr. Irit Dinur Presented by Rica Gonen.
Prasad Raghavendra University of Washington Seattle Optimal Algorithms and Inapproximability Results for Every CSP?
Ryan O’Donnell & Yi Wu Carnegie Mellon University (aka, Conditional hardness for satisfiable 3-CSPs)
Recent Progress in Approximability. Administrivia Most agreeable times: Monday 2:30-4:00 Wednesday 4:00-5:30 Thursday 4:00-5:30 Friday 1:00-2:30 Please.
3-Query Dictator Testing Ryan O’Donnell Carnegie Mellon University joint work with Yi Wu TexPoint fonts used in EMF. Read the TexPoint manual before you.
Introduction to PCP and Hardness of Approximation Dana Moshkovitz Princeton University and The Institute for Advanced Study 1.
A 3-Query PCP over integers a.k.a Solving Sparse Linear Systems Prasad Raghavendra Venkatesan Guruswami.
1/17 Optimal Long Test with One Free Bit Nikhil Bansal (IBM) Subhash Khot (NYU)
Complexity ©D.Moshkovits 1 Hardness of Approximation.
Umans Complexity Theory Lectures Lecture 15: Approximation Algorithms and Probabilistically Checkable Proofs (PCPs)
Inapproximability from different hardness assumptions Prahladh Harsha TIFR 2011 School on Approximability.
Two Query PCP with Sub-constant Error Dana Moshkovitz Princeton University Ran Raz Weizmann Institute 1.
Dictator tests and Hardness of approximating Max-Cut-Gain Ryan O’Donnell Carnegie Mellon (includes joint work with Subhash Khot of Georgia Tech)
Approximation Algoirthms: Semidefinite Programming Lecture 19: Mar 22.
Venkatesan Guruswami (CMU) Yuan Zhou (CMU). Satisfiable CSPs Theorem [Schaefer'78] Only three nontrivial Boolean CSPs for which satisfiability is poly-time.
CS151 Complexity Theory Lecture 7 April 20, 2004.
Semidefinite Programming
Vol.1: Geometry Subhash Khot IAS Elchanan Mossel UC Berkeley Guy Kindler DIMACS Ryan O’Donnell IAS.
1. 2 Gap-QS[O(n), ,2|  | -1 ] 3SAT QS Error correcting codesSolvability PCP Proof Map In previous lectures: Introducing new variables Clauses to polynomials.
Generic Rounding Schemes for SDP Relaxations
1 COMPOSITION PCP proof by Irit Dinur Presentation by Guy Solomon.
Complexity 19-1 Complexity Andrei Bulatov More Probabilistic Algorithms.
Ryan O'Donnell (CMU, IAS) Yi Wu (CMU, IBM) Yuan Zhou (CMU)
1. 2 Overview Some basic math Error correcting codes Low degree polynomials Introduction to consistent readers and consistency tests H.W.
1 INTRODUCTION NP, NP-hardness Approximation PCP.
CS151 Complexity Theory Lecture 15 May 18, CS151 Lecture 152 Outline IP = PSPACE Arthur-Merlin games –classes MA, AM Optimization, Approximation,
1 The PCP starting point. 2 Overview In this lecture we’ll present the Quadratic Solvability problem. In this lecture we’ll present the Quadratic Solvability.
E3-LIN-2 is hard to approximate Hastad Speaker : Guy Kindler.
CS151 Complexity Theory Lecture 16 May 25, CS151 Lecture 162 Outline approximation algorithms Probabilistically Checkable Proofs elements of the.
1 Slides by Asaf Shapira & Michael Lewin & Boaz Klartag & Oded Schwartz. Adapted from things beyond us.
1 2 Introduction In this lecture we’ll cover: Definition of strings as functions and vice versa Error correcting codes Low degree polynomials Low degree.
1 Joint work with Shmuel Safra. 2 Motivation 3 Motivation.
1 Hardness Result for MAX-3SAT This lecture is given by: Limor Ben Efraim.
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
Subhash Khot’s work and its impact Sanjeev Arora Computer Science Dept, Princeton University ICM 2014 Nevanlinna Prize Laudatio.
1. 2 Overview of the Previous Lecture Gap-QS[O(n), ,2|  | -1 ] Gap-QS[O(1), ,2|  | -1 ] QS[O(1),  ] Solvability[O(1),  ] 3-SAT This will imply a.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Sub-Constant Error Low Degree Test of Almost-Linear Size Dana Moshkovitz Weizmann Institute Ran Raz Weizmann Institute.
Hardness of Learning Halfspaces with Noise Prasad Raghavendra Advisor Venkatesan Guruswami.
Direct-product testing, and a new 2-query PCP Russell Impagliazzo (IAS & UCSD) Valentine Kabanets (SFU) Avi Wigderson (IAS)
Generic Conversion of SDP gaps to Dictatorship Test (for Max Cut) Venkatesan Guruswami Fields Institute Summer School June 2011 (Slides borrowed from Prasad.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
Private Approximation of Search Problems Amos Beimel Paz Carmi Kobbi Nissim Enav Weinreb (Technion)
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
Non-Approximability Results. Summary -Gap technique -Examples: MINIMUM GRAPH COLORING, MINIMUM TSP, MINIMUM BIN PACKING -The PCP theorem -Application:
Unique Games Approximation Amit Weinstein Complexity Seminar, Fall 2006 Based on: “Near Optimal Algorithms for Unique Games" by M. Charikar, K. Makarychev,
Prasad Raghavendra Georgia Institute of Technology, Atlanta, GA Complexity of Constraint Satisfaction Problems Exact and Approximate TexPoint fonts used.
Yuan Zhou, Ryan O’Donnell Carnegie Mellon University.
1 2 Introduction In this lecture we’ll cover: Definition of PCP Prove some classical hardness of approximation results Review some recent ones.
Boaz Barak (MSR New England) Fernando G.S.L. Brandão (Universidade Federal de Minas Gerais) Aram W. Harrow (University of Washington) Jonathan Kelner (MIT)
CS151 Complexity Theory Lecture 15 May 18, Gap producing reductions Main purpose: –r-approximation algorithm for L 2 distinguishes between f(yes)
Umans Complexity Theory Lectures Lecture 16: The PCP Theorem.
Yuan Zhou Carnegie Mellon University Joint works with Boaz Barak, Fernando G.S.L. Brandão, Aram W. Harrow, Jonathan Kelner, Ryan O'Donnell and David Steurer.
Finding Almost-Perfect
Polynomial integrality gaps for
Dana Moshkovitz The Institute For Advanced Study
Subhash Khot Dept of Computer Science NYU-Courant & Georgia Tech
Where Can We Draw The Line?
Linear sketching with parities
Venkatesan Guruswami Yuan Zhou (Carnegie Mellon University)
Introduction to PCP and Hardness of Approximation
PCP Characterization of NP:
Presentation transcript:

Constraint Satisfaction over a Non-Boolean Domain Approximation Algorithms and Unique Games Hardness Venkatesan Guruswami Prasad Raghavendra University of Washington Seattle, WA

Constraint Satisfaction Problem A Classic Example : Max-3-SAT Given a 3-SAT formula, Find an assignment to the variables that satisfies the maximum number of clauses. Equivalently the largest fraction of clauses

Constraint Satisfaction Problem General Definition : Domain : {0,1,.. q-1} Predicates :{P 1, P 2, P 3 … P r } P i : [q] k -> {0,1} Arity : Maximum number of variables per constraint (k) Example : Max-3-SAT Domain : {0,1} Predicates : P 1 (x,y,z) = x ѵ y ѵ z Arity = 3 GOAL : Find an assignment satisfying maximum fraction of constraints

Approximability Max-3-SAT : 7/8 [Karloff-Zwick],[Hastad] Most Max-CSP problems are NP-hard to solve exactly. Different Max-CSP problems are approximable to varying ratios. 3-XOR : ½ [Hastad] Max-Cut : [Goemans-Williamson], [Khot-Kindler-Mossel- O’donnel] Max-2-SAT : 0.94 [Lempel-Livnat- Zwick],[Austrin]

Question : Which Max-CSP is the hardest to approximate? Refined Question : Among all Max-CSP problems over domain [q] ={0,..q-1}, and arity k, which is the hardest to approximate? Clearly, the problems become harder as domain size or the arity grows

PCP Motivation Probabilistically Checkable Proof (A string over alphabet {0,1,..q-1}) Verifier Random bits ACCEPT/REJECT Completeness(C) : If SAT formula is satisfiable, there is a proof that verifier accepts with probability C Soundness (S): For an unsatisfiable formula, no proof is accepted with probability more than S

Among all Max-CSP problems over domain [q] ={0,..q-1}, and arity k, which is the hardest to approximate? PCP Motivation What is the best possible gap between completeness (c) and soundness (s) for a PCP verifier that makes k queries over an alphabet [q] = {0,1,..q-1} ?

Boolean CSPs Hardness: For every k, there is a boolean CSP of arity k, which is NP- hard to approximate better than : Algorithm: Every boolean CSP of arity k, can be approximated to a factor : [Samorodnitsky-Trevisan 2000] simplified by [Hastad-Wigderson] [Engebresten-Holmerin] [Samorodnitsky-Trevisan 2006] Assuming Unique Games Conjecture Random Assignment [Trevisan] [Hast] [Charikar-Makarychev-Makarychev]

This Work : Non-Boolean CSPs UG Hardness: Assuming Unique Games Conjecture, For every k, and a prime number q, there is a CSP of arity k over the domain [q] ={0,1,2,..q-1}, which is NP-hard to approximate better than Algorithm: The algorithm of [Charikar-Makarychev- Makarychev] can be extended to non-boolean domains. Every CSP of arity k over the domain [q] ={0,1,2,..q-1} can be approximated to a factor

Related Work [Raghavendra 08] “Optimal approximation algorithms and hardness results for every CSP, assuming Unique Games Conjecture.” – “Every” so applies to the hardest CSPs too. – Does not give explicit example of hardest CSP, nor the explicit value of the approximation ratio. [Austrin-Mossel 08] “ Assuming Unique Games conjecture, For every prime power q, and k, it is NP-hard to approximate a certain CSP over [q] to a factor > ” – Independent work using entirely different techniques(invariance principle) – Show a more general result, that yields a criteria for Approximation Resistance of a predicate.

Techniques We extend the proof techniques of [Samorodnitsky-Trevisan 2006] to non- boolean domains. To this end, we – Define a subspace linearity test. – Show a technical lemma relating the success probability of a function F to the Gower’s norm of F (similar to the standard proof relating the number of multidimensional arithmetic progressions to the Gower’s norm) Along the way, we make some minor simplifications to [Samorodnitsky-Trevisan 2006]. – (Remove the need for common influences)

Proof Overview

Given a function F : [q] R [q], Make at most k queries to F Based on values of F, Output ACCEPT or REJECT. Distinguish between the following two cases : Dictatorship Testing Problem F is a dictator function F(x 1,… x R ) = x i F is far from every dictator function (No influential coordinate) Pr[ACCEPT ] = Completeness Pr[ACCEPT ] = Soundness Goal : Achieve maximum gap between Completeness and Soundness

UG Hardness Proofs UG Hardness Result: Assuming Unique Games Conjecture, it is NP- hard to approximate a CSP over [q] with arity k to ratio better than C/S Using [Khot-Kindler-Mossel-O’Donnell] reduction. Dictatorship Test Over functions F:[q] R -> [q] Completeness = C Soundness = S # of queries = k For the rest of the talk, we shall focus on Dictatorship Testing.

Testing Dictatorships by Testing Linearity [Samorodnitsky-Trevisan 2006] Fix {0,1} : field on 2 elements k = 2 d Given a function F : {0,1} R -> {0,1} Pick a random affine subspace A of dimension d. Test if F agrees with some affine linear function on the subspace A. Every dictator F(x 1, x 2,.. x R ) = x i is a linear function over vector space {0,1} R Random Assignment : There are 2 d+1 different affine linear functions on A. There are possible functions on A. So a random function satisfies the test with probability

Gower’s Norm For F : {0,1} R -> {0,1}, let f(x) = (-1) F(x). d th Gowers Norm U d (f) = E [ product of f over C ] Expectation over random d- dimensional subcubes C in {0,1} R xx+y 1 x+y 2 x+y 1 +y 2 xx+y 1 x+y 2 x+y 1 +y 2 x x+y 1 x+y 3 + y 2 x+y 1 +y 2 +y 3 x+y 3 x+y 1 +y 3 d-dimensional cube spanned by {x,y 1,y 2,.. y d } is Cubes

More Formally, Intuitively, the d th Gower’s norm measures the correlation of the function f with degree d-1 polynomials. Gower’s Norm

Testing Dictatorships by Testing Linearity [Samorodnitsky-Trevisan 2006] Lemma : If F : {0,1} R -> {0,1} passes the test with probability then f = (-1) F has high d th Gowers Norm. (k=2 d ) Lemma : If a balanced function f : {0,1} R -> {-1,1} has high d th Gowers Norm, then it has an influential coordinate (k=2 d ) Theorem : If a balanced function F : {0,1} R -> {0,1} passes the test with probability then it has an influential coordinate Using Noise sensitivity, There are only a FEW influential coordinates.

Extending to Larger domains Fix [q]: field on q elements(q is a prime). k = q d Given a function F : [q] R -> [q] Pick a random affine subspace A of dimension d. Test if F agrees with some affine linear function on the subspace A. Replace 2 by q in the [Samorodnitsky- Trevisan] dictatorship test.

The Difficulty Lemma : If F : {0,1} R -> {0,1} passes the test with probability then f = (-1) F has high d th Gowers Norm. (k=2 d ) Over {0,1} R, Subcube = Affine subspace. Testing linearity over a random affine subspace, can be easily related to expectation over a random cube. Over [q] R, Subcube ≠ Affine subspace. (2 R points) (q R points)

Success probability of a function F : {0,1} R -> {0,1}, is related to : let f(x) = (-1) F(x). E [ product of f over A ] Expectation over random d-dimensional affine subspace A in [q] R (Affine subspaces are like multidimensional arithmetic progressions) xx+y 1 x+2y 1 x+(q-2)y 1 x+(q-1)y 1 x+y 2 +y 1 x+y 2 +2y 1 x+y 2 + (q-2)y 1 x+y 2 + (q-1)y 1 x x+y 1 x+2y 1 x+ (q-2)y 1 x+ (q-1)y 1 x+2y 2 +y 1 x+2y 2 +2y 1 x+2y 2 + (q-2)y 1 x+2y 2 + (q-1)y 1 x+(q-2)y 2 +y 1 x+(q-2)y 2 +2y 1 x+(q-2)y 2 + (q-2)y 1 x+(q-2)y 2 + (q-1)y 1 x+(q-2)y 2 x+2y 2 x+y 2 x+(q-1)y 2 x+(q-1)y 2 +y 1 x+(q-1)y 2 +2y 1 x+(q-1)y 2 + (q-2)y 1 x+(q-1)y 2 + (q-1)y 1 Multidimensional Progressions E [ product of f over C ] Expectation over random dq-dimensional subcubes C in [q] R

Alternate Lemma Lemma : If F : [q] R -> [q] passes the test with probability then f = (-1) F has high dq th Gower’s Norm. (k=q d ) d-dimensional affine subspace test relates to the dq th Gower’s norm The proof is technical and involves repeated use of the Cauchy-Schwartz inequality. A special case of a more general result by [Green-Tao][Gowers-Wolf], where they define “Cauchy-Schwartz Complexity” of a set of linear forms.

Open Questions CSPs with Perfect Completeness: Which CSP is hardest to approximate, under the promise that the input instance is completely satisfiable? Approximation Resistance: Characterize CSPs for which the best approximation achievable is given by a random assignment.

Thank You

Unique Games A Special Case E2LIN mod p Given a set of linear equations of the form: X i – X j = c ij mod p Find a solution that satisfies the maximum number of equations. x-y = 11 (mod 17) x-z = 13 (mod 17) … …. z-w = 15(mod 17)

Unique Games Conjecture [Khot 02] An Equivalent Version [Khot-Kindler-Mossel-O’Donnell] For every ε> 0, the following problem is NP-hard for large enough prime p Given a E2LIN mod p system, distinguish between: There is an assignment satisfying 1-ε fraction of the equations. No assignment satisfies more than ε fraction of equations.