Quantum Data Hiding Challenges and Opportunities Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Based on joint work with M. Christandl,

Slides:



Advertisements
Similar presentations
Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
Advertisements

Quantum t-designs: t-wise independence in the quantum world Andris Ambainis, Joseph Emerson IQC, University of Waterloo.
Quantum Software Copy-Protection Scott Aaronson (MIT) |
Multilinear Formulas and Skepticism of Quantum Computing Scott Aaronson UC Berkeley IAS.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Pretty-Good Tomography Scott Aaronson MIT. Theres a problem… To do tomography on an entangled state of n qubits, we need exp(n) measurements Does this.
Random Quantum Circuits are Unitary Polynomial-Designs Fernando G.S.L. Brandão 1 Aram Harrow 2 Michal Horodecki 3 1.Universidade Federal de Minas Gerais,
Equilibration and Unitary k- Designs Fernando G.S.L. Brandão UCL Joint work with Aram Harrow and Michal Horodecki arXiv: IMS, September 2013.
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Quantum Information Theory as a Proof Technique Fernando G.S.L. Brandão ETH Zürich With B. Barak (MSR), M. Christandl (ETH), A. Harrow (MIT), J. Kelner.
Monogamy of Quantum Entanglement Fernando G.S.L. Brandão ETH Zürich Princeton EE Department, March 2013.
Quantum information as high-dimensional geometry Patrick Hayden McGill University Perspectives in High Dimensions, Cleveland, August 2010.
Short course on quantum computing Andris Ambainis University of Latvia.
Quantum Computing MAS 725 Hartmut Klauck NTU
Exponential Decay of Correlations Implies Area Law Fernando G.S.L. Brandão ETH Zürich Based on joint work with Michał Horodecki Arxiv: COOGEE.
New Variants of the Quantum de Finetti Theorem with Applications Fernando G.S.L. Brandão ETH Zürich Based on joint work with Aram Harrow Arxiv:
Stronger Subadditivity Fernando G.S.L. Brandão University College London -> Microsoft Research Coogee 2015 based on arXiv: with Aram Harrow Jonathan.
Superdense coding. How much classical information in n qubits? Observe that 2 n  1 complex numbers apparently needed to describe an arbitrary n -qubit.
Gate robustness: How much noise will ruin a quantum gate? Aram Harrow and Michael Nielsen, quant-ph/0212???
Quantum Algorithms I Andrew Chi-Chih Yao Tsinghua University & Chinese U. of Hong Kong.
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
1 Quantum NP Dorit Aharonov & Tomer Naveh Presented by Alex Rapaport.
Coherent Classical Communication Aram Harrow (MIT) quant-ph/
Torun, 5 June Symposium on Mathematical Physics N.Copernicus University Efficient Generation of Generic Entanglement Oscar C.O. Dahlsten with Martin.
T he Separability Problem and its Variants in Quantum Entanglement Theory Nathaniel Johnston Institute for Quantum Computing University of Waterloo.
Area Laws for Entanglement Fernando G.S.L. Brandão University College London joint work with Michal Horodecki arXiv: arXiv:1406.XXXX Stanford.
Entanglement Area Law (from Heat Capacity)
Exponential Decay of Correlations Implies Area Law Fernando G.S.L. Brandão ETH Zürich Based on joint work with Michał Horodecki Arxiv: Q+ Hangout,
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 16 (2011)
ENTROPIC CHARACTERISTICS OF QUANTUM CHANNELS AND THE ADDITIVITY PROBLEM A. S. Holevo Steklov Mathematical Institute, Moscow.
The Operational Meaning of Min- and Max-Entropy
Faithful Squashed Entanglement Fernando G.S.L. Brandão 1 Matthias Christandl 2 Jon Yard 3 1. Universidade Federal de Minas Gerais, Brazil 2. ETH Zürich,
Monogamy of non- signalling correlations Aram Harrow (MIT) Simons Institute, 27 Feb 2014 based on joint work with Fernando Brandão (UCL) arXiv:
Thermalization and Quantum Information Fernando G.S.L. Brandão University College London New Perspectives on Thermalization, Aspen 2014 partially based.
The Operational Meaning of Min- and Max-Entropy Christian Schaffner – CWI Amsterdam, NL joint work with Robert König – Caltech Renato Renner – ETH Zürich,
Quantum Gibbs Samplers Fernando G.S.L. Brandão QuArC, Microsoft Research Based on joint work with Michael Kastoryano University of Copenhagen Quantum Hamiltonian.
A reversible framework for entanglement and other resource theories Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Martin B. Plenio.
The computational complexity of entanglement detection Based on and With Gus Gutoski, Patrick Hayden, and Kevin Milner Mark M. Wilde.
Barriers in Hamiltonian Complexity Umesh V. Vazirani U.C. Berkeley.
The Complexity of Quantum Entanglement Fernando G.S.L. Brandão ETH Zürich Based on joint work with M. Christandl and J. Yard Journees Deferation de Reserche.
The complexity of poly-gapped Hamiltonians (Extending Valiant-Vazirani Theorem to the probabilistic and quantum settings) Fernando G.S.L. Brandão joint.
Recent Progress in Many-Body Theories Barcelona, 20 July 2007 Antonio Acín 1,2 J. Ignacio Cirac 3 Maciej Lewenstein 1,2 1 ICFO-Institut de Ciències Fotòniques.
A Monomial matrix formalism to describe quantum many-body states Maarten Van den Nest Max Planck Institute for Quantum Optics Montreal, October 19 th 2011.
A generalization of quantum Stein’s Lemma Fernando G.S.L. Brandão and Martin B. Plenio Tohoku University, 13/09/2008.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Lattice-based cryptography and quantum Oded Regev Tel-Aviv University.
On Minimum Reversible Entanglement Generating Sets Fernando G.S.L. Brandão Cambridge 16/11/2009.
SDP hierarchies and quantum states Aram Harrow (MIT)Simons Institute
Capabilities and limitations of quantum computers Michele Mosca 1 November 1999 ECC ’99.
Multipartite Entanglement and its Role in Quantum Algorithms Special Seminar: Ph.D. Lecture by Yishai Shimoni.
Fidelity of a Quantum ARQ Protocol Alexei Ashikhmin Bell Labs  Classical Automatic Repeat Request (ARQ) Protocol  Quantum Automatic Repeat Request (ARQ)
Quantum Cryptography Antonio Acín
Coherent Communication of Classical Messages Aram Harrow (MIT) quant-ph/
Fidelities of Quantum ARQ Protocol Alexei Ashikhmin Bell Labs  Classical Automatic Repeat Request (ARQ) Protocol  Qubits, von Neumann Measurement, Quantum.
Boaz Barak (MSR New England) Fernando G.S.L. Brandão (Universidade Federal de Minas Gerais) Aram W. Harrow (University of Washington) Jonathan Kelner (MIT)
Locking of correlations Debbie Leung U. Waterloo From: Charles Bennett Date: Sept 06, 2001 Subject: Pictures from Huangshan China Dear Friends, Here is.
A counterexample for the graph area law conjecture Dorit Aharonov Aram Harrow Zeph Landau Daniel Nagaj Mario Szegedy Umesh Vazirani arXiv:
Pseudorandomness: New Results and Applications Emanuele Viola IAS April 2007.
Quantum information and the monogamy of entanglement Aram Harrow MIT (UCL until Jan 2015)
Quantum Approximate Markov Chains and the Locality of Entanglement Spectrum Fernando G.S.L. Brandão Caltech Seefeld 2016 based on joint work with Kohtaro.
Fernando G.S.L. Brandão and Martin B. Plenio
Fernando G.S.L. Brandão Microsoft Research MIT 2016
Quantum de Finetti theorems for local measurements
A low cost quantum factoring algorithm
Information-Theoretical Analysis of the Topological Entanglement Entropy and Multipartite correlations Kohtaro Kato (The University of Tokyo) based on.
Background: Lattices and the Learning-with-Errors problem
Quantum Information Theory Introduction
Decoupling with random diagonal-unitaries
Presentation transcript:

Quantum Data Hiding Challenges and Opportunities Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Based on joint work with M. Christandl, A. Harrow, M. Horodecki, J. Yard PI, 02/11/2011

Outline Data Hiding From LOCC Other Examples Determining Entanglement Data Hiding States are the Hardest Instances Computational Data Hiding Random Quantum Circuits are Unitary Poly-Designs Area Law in Gapped Models The Guessing Probability Decay of Correlations

Data Hiding P sym, P asym: projectors onto symmetric and antisymmetric subspaces of. Define w - := P sym /dim(P sym ), w + := P asym /dim(P asym ). States are orthogonal, hence perfectly distinguishable. How about under LOCC measurements? They cannot be distinguished with probability > ½+1/d (Eggeling, Werner ’02 ) They are data hiding against LOCC. LOCC: Local quantum Operations and Classical Communication

The LOCC Norm Trace norm: ||ρ – σ|| 1 = 2 max 0<M<I tr(M(ρ – σ)) optimal bias of distinguishing two states by a quantum measurement LOCC norm ||ρ AB – σ AB || LOCC = 2 max 0<M<I tr(M(ρ – σ)) : {M, I - M} in LOCC We have ½ ||w + – w - || 1 = 1, ½ ||w + – w - || LOCC < 1/d

Data Hiding (Shor ’95, Steane ‘96, …) Error Correcting Codes (Wen et al ‘89, …) Topological Order (Cleve et al ’99) Quantum secret sharing schemes (Leung et al ’01) Hiding bits in quantum states (Hayden et al ’04) Generic states are data hiding (Horodecki, Oppenheim ’04) Big gap of key versus distillable entanglement

Quantum Entanglement Pure States: If, it’s separable otherwise, it’s entangled. Mixed States: If, it’s separable otherwise, it’s entangled.

The problem

The Separability Problem Given is it entangled? (Weak Membership: W SEP (ε, ||*||)) Given ρ AB determine if it is separable, or ε-way from SEP SEP D

Relevance Quantum Cryptography Security only if state is entangled Quantum Communication Advantage over classical (e.g. teleportation, dense coding) only if state is entangled Quantum Many-body Theory Best Separable State problem: compute ground state energy of mean-field Hamiltonians

The separability problem When is ρ AB entangled? - Decide if ρ AB is separable or ε-away from separable Beautiful theory behind it (PPT, entanglement witnesses, symmetric extensions, etc) Horribly expensive algorithms State-of-the-art: 2 O(|A|log (1/ε)) time complexity (Doherty, Parrilo, Spedalieri ‘04)

Hardness Results When is ρ AB entangled? - Decide if ρ AB is separable or ε-away from separable (Gurvits ‘02) NP-hard with ε=1/exp(|A||B|) (Gharibian ‘08, Beigi ‘08) NP-hard with ε=1/poly(|A||B|) (Harrow, Montanaro ‘10) No exp(O(log 1-ν |A|log 1-μ |B|)) time algorithm for ||*|| 1, with ν + μ > 0 (unless there is a subexponential algorithm for SAT)

A Faster Algorithm (B., Christandl, Yard ‘10) There is a exp(O(ε -2 log|A|log|B|)) time algorithm for W SEP (||*|| LOCC, ε) Compare (Harrow, Montanaro ‘10) No exp(O(log 1-ν |A|log 1-μ |B|)) algorithm for W SEP (||*|| 1, ε), with ν + μ > 0 and constant ε. I.e. a similar algorithm in trace norm would be optimal The challenge are states ρ AB for which i.e data hiding states (against LOCC)

A Faster Algorithm (B., Christandl, Yard ‘10) There is a exp(O(ε -2 log|A|log|B|)) time algorithm for W SEP (||*|| LOCC, ε) Compare (Harrow, Montanaro ‘10) No exp(O(log 1-ν |A|log 1-μ |B|)) algorithm for W SEP (||*|| 1, ε), with ν + μ > 0 and constant ε. I.e. a similar algorithm in trace norm would be optimal The challenge are states ρ AB for which i.e data hiding states (against LOCC)

Entanglement Monogamy Classical correlations are shareable: A B

Entanglement Monogamy Classical correlations are shareable: A B1B1 B2B2 B3B3 B4B4 BkBk …

Entanglement Monogamy Classical correlations are shareable: Def. ρ AB is k-extendible if there is ρ AB1…Bk s.t for all j in [k], tr \ Bj (ρ AB1…Bk ) = ρ AB - Separable states are k-extendible for every k A B1B1 B2B2 B3B3 B4B4 BkBk …

Entanglement Monogamy Quantum correlations are non-shareable: ρ AB entangled iff ρ AB not k-extendible for some k Follows from : Quantum de Finetti Theorem (Stormer ’69, Hudson & Moody ’76, Raggio & Werner ’89) E.g. Any pure entangled state is not 2-extendible The d x d antisymmetric state is not d-extendible (but is (d-1)-extendible…)

Entanglement Monogamy Quantitative version: For any k-extendible ρ AB, Follows from: Finite quantum de Finetti Theorem (Christandl, König, Mitchson, Renner ‘05) Close to optimal: there is ρ AB s.t. Guess what?

Exponentially Improved Monogamy (B. Christandl, Yard ‘11) For any k-extendible ρ AB, Bound proportional to the (square root) of # qubits Highly extendible entangled states must be data hiding Algorithm follows by searching for a (O(log|A|/ε 2 ))-symmetric extension by Semidefinite Programming (SDP with|A||B| O(log|A|/ε2) variables - the dimension of the k-extension)

Proof Techniques Coding Theory Strong subadditivity of von Neumann entropy as state redistribution rate (Devetak, Yard ‘06) Large Deviation Theory Hypothesis testing of entangled states (B., Plenio ‘08) Entanglement Measure Theory Squashed Entanglement (Christandl, Winter ’04)

Computational Data Hiding “Most quantum states look maximally mixed for all polynomial sized circuits” Most with respect to the Haar measure: We choose the state as U|0 n >, for a random Haar distributed unitary U in U(2 n ) I.e. For every integrable function in U(d) and every V in U(d) E U ~ Haar f(U) = E U ~ Haar f(VU)

Computational Data Hiding “Most quantum states look maximally mixed for all polynomial sized circuits” e.g. most quantum states are useless for measurement based quantum computation (Gross et al ‘08, Bremner et al ‘08) Let QC(k) be the set of 2-outcome POVM {A, I-A} that can be implemented by a circuit with k gates Proof by Levy’s Lemma + eps-net on the set of poly(n) POVMS

The Price You Have to Pay… To sample from the Haar measure with error ε you need exp(4 n log(1/ε)) different unitaries Exponential amount of random bits and quantum gates… E.g. most quantum states (all but a exp(-exp(cn)) fraction) require exp(cn) two qubit gates to be approximately created… Question Can data hiding states against computational bounded measurements be prepared efficiently?

The Price You Have to Pay… To sample from the Haar measure with error ε you need exp(4 n log(1/ε)) different unitaries Exponential amount of random bits and quantum gates… E.g. most quantum require exp(cn) two qubit gates to be approximately created… Question Can data hiding states against computational bounded measurements be prepared efficiently?

Quantum Pseudo-Randomness Sometimes, can replace a Haar random unitary by pseudo-random unitaries: Quantum Unitary t-designs Def. An ensemble of unitaries {μ(dU), U} in U(d) is an ε-approximate unitary t-design if for every monomial M = U p1, q1… U pt, qt U* r1, s1… U* rt, st, |E μ (M(U)) – E Haar (M(U))|≤ d -2t ε

Quantum Unitary Designs Conjecture 1. There are efficient ε-approximate unitary t-designs {μ(dU), U} in U(2 n ) Efficient means: unitaries created by poly(n, t, log(1/ε)) two-qubit gates μ(dU) can be sampled in poly(n, t, log(1/ε)) time. (Harrow and Low ’08) Efficient construction of approximate unitary (n/log(n))- design

Random Quantum Circuits Local Random Circuit: in each step an index i in {1, …,n} is chosen uniformly at random and a two- qubits Haar unitary is applied to qubits i e i+1 Random Walk in U(2 n ) (Another example: Kac’s random walk – toy model Boltzmann gas) Introduced in (Hayden and Preskill ’07) as a toy model for the dynamics of a black hole (B., Horodecki ’10) O(n 2 ) local random circuits are approximate unitary 3-designs

Random Quantum Circuits Local Random Circuit: in each step an index i in {1, …,n} is chosen uniformly at random and a two- qubits Haar unitary is applied to qubits i e i+1 Random Walk in U(2 n ) (Another example: Kac’s random walk – toy model Boltzmann gas) Introduced in (Hayden and Preskill ’07) as a toy model for the dynamics of a black hole

Random Quantum Circuits Previous work: (Oliveira, Dalhsten, Plenio ’07) O(n 3 ) random circuits are 2-designs (Harrow, Low ’08) O(n 2 ) random Circuits are 2-designs for every universal gate set (Arnaud, Braun ’08) numerical evidence that O(nlog(n)) random circuits are unitary t-design (Znidaric ’08) connection with spectral gap of a mean-field Hamiltonian for 2-designs (Brown, Viola ’09) connection with spectral gap of Hamiltonian for t-designs (B., Horodecki ’10) O(n 2 ) local random circuits are 3-designs

Random Quantum Circuits as t- designs? Conjecture 2. Random Circuits of size poly(n, log(1/ ε )) are an ε-approximate unitary poly(n)-design

Random Quantum Circuits as t- designs Conjecture 2. Random Circuits of size poly(n, log(1/ ε )) are an ε-approximate unitary poly(n)-design (B., Harrow, Horodecki ’11) Local Random Circuits of size Õ(n 2 t 5 log(1/ε)) are an ε-approximate unitary t-design

Computational Data Hiding Most quantum states created by O(n k ) circuits look maximally mixed for every circuit of size O(n (k+4)/6 ) Most is defined in terms of the measure on quantum circuits given by the local random circuit model

Computational Data Hiding Most quantum states created by O(n k ) circuits look maximally mixed for every circuit of size O(n (k+4)/6 ) Same idea (small probability + eps-net), but replace Levy’s lemma by a t-design bound from (Low ‘08): with t = s 1/6 n -1/3 and ν s,n the measure on U(2 n ) induced by s steps of the local random circuit model

Proof Techniques Quantum Many-body Theory Technique for lower bounding spectral gap of frustration-free local Hamiltonians (Nachtergaele ‘96) Representation Theory Permutation matrices are approximately orthogonal (Harrow ’11) Markov Chains Path coupling to the unitary group (Oliveira ’08)

Area Laws Let H be a local Hamiltonian on a lattice and |ψ 0 > its groundstate How complex is |ψ 0 > ? Conjecture: For gapped H, R

Previous Work (Vidal et al ‘02, Plenio et al ’05, Etc) Area law for particular models (XY, quasi-free bosonic models, etc) (Hastings ‘04) Exponential decay of correlations in gapped models (Aharonov et al ‘07, Gottesman, Hastings ’09) Groundstates of 1D systems with volume law (Hastings ’07) are law for every gapped 1D Hamiltonian! (Arad et al ’11) improved area law for 1D frustration free models

Area Law vs Decay of Correlations Decay of Correlations: ABC l Does it imply ? Would lead to area law Unfortunately, No, because of Data Hiding states (Hastings ‘07) Does it work for stronger forms of decay of correlations?

Stronger Decay of Correlations One-way LOCC: Implies area law. But is it satisfied by gapped systems? Guessing Probability: Is satisfied by gapped systems. But does it imply area law?

Summary Quantum correlations can be hidden in interesting ways LOCC data hiding entangled states are the hardest to characterize – correlations more shareable One can hide data against efficient measurements efficiently Õ(n 2 t 5 log(1/ε)) local random circuits are ε-approximate unitary t-designs Data Hiding is obstruction to area law. Can we overcome it? Guessing probability decay of correlations useful?