Movie theatre service on brightness and volume range leading to maximum clique graph By, Usha Kavirayani.

Slides:



Advertisements
Similar presentations
P, NP, NP-Complete Problems
Advertisements

Introduction to Algorithms NP-Complete
NP-Hard Nattee Niparnan.
1 NP-completeness Lecture 2: Jan P The class of problems that can be solved in polynomial time. e.g. gcd, shortest path, prime, etc. There are many.
NP-Completeness: Reductions
Department of Computer Science & Engineering
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
The Theory of NP-Completeness
1 NP-Complete Problems. 2 We discuss some hard problems:  how hard? (computational complexity)  what makes them hard?  any solutions? Definitions 
Theory of Computing Lecture 16 MAS 714 Hartmut Klauck.
© The McGraw-Hill Companies, Inc., Chapter 8 The Theory of NP-Completeness.
Computability and Complexity 23-1 Computability and Complexity Andrei Bulatov Search and Optimization.
Introduction to Approximation Algorithms Lecture 12: Mar 1.
NP-Complete Problems Reading Material: Chapter 10 Sections 1, 2, 3, and 4 only.
The Theory of NP-Completeness
NP-Complete Problems Problems in Computer Science are classified into
Analysis of Algorithms CS 477/677
Time Complexity.
NP-complete examples CSC3130 Tutorial 11 Xiao Linfu Department of Computer Science & Engineering Fall 2009.
Ch 13 – Backtracking + Branch-and-Bound
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Hardness Results for Problems
1 The Theory of NP-Completeness 2 NP P NPC NP: Non-deterministic Polynomial P: Polynomial NPC: Non-deterministic Polynomial Complete P=NP? X = P.
Busby, Dodge, Fleming, and Negrusa. Backtracking Algorithm Is used to solve problems for which a sequence of objects is to be selected from a set such.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
The Theory of NP-Completeness 1. What is NP-completeness? Consider the circuit satisfiability problem Difficult to answer the decision problem in polynomial.
MCS312: NP-completeness and Approximation Algorithms
1 The Theory of NP-Completeness 2012/11/6 P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class of decision.
Nattee Niparnan. Easy & Hard Problem What is “difficulty” of problem? Difficult for computer scientist to derive algorithm for the problem? Difficult.
Complexity Classes (Ch. 34) The class P: class of problems that can be solved in time that is polynomial in the size of the input, n. if input size is.
APPROXIMATION ALGORITHMS VERTEX COVER – MAX CUT PROBLEMS
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Advanced Algorithm Design and Analysis (Lecture 13) SW5 fall 2004 Simonas Šaltenis E1-215b
Design and Analysis of Algorithms - Chapter 111 How to tackle those difficult problems... There are two principal approaches to tackling NP-hard problems.
Approximation Algorithms
CSC 172 P, NP, Etc. “Computer Science is a science of abstraction – creating the right model for thinking about a problem and devising the appropriate.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
CSE 024: Design & Analysis of Algorithms Chapter 9: NP Completeness Sedgewick Chp:40 David Luebke’s Course Notes / University of Virginia, Computer Science.
EMIS 8373: Integer Programming NP-Complete Problems updated 21 April 2009.
CSCI 3160 Design and Analysis of Algorithms Tutorial 10 Chengyu Lin.
CSE 589 Part VI. Reading Skiena, Sections 5.5 and 6.8 CLR, chapter 37.
NP-Complete Problems. Running Time v.s. Input Size Concern with problems whose complexity may be described by exponential functions. Tractable problems.
NP-COMPLETE PROBLEMS. Admin  Two more assignments…  No office hours on tomorrow.
NP-Complete problems.
Instructor Neelima Gupta Table of Contents Class NP Class NPC Approximation Algorithms.
Design and Analysis of Algorithms - Chapter 101 Our old list of problems b Sorting b Searching b Shortest paths in a graph b Minimum spanning tree b Primality.
CS 3343: Analysis of Algorithms Lecture 25: P and NP Some slides courtesy of Carola Wenk.
LIMITATIONS OF ALGORITHM POWER
CS6045: Advanced Algorithms NP Completeness. NP-Completeness Some problems are intractable: as they grow large, we are unable to solve them in reasonable.
NPC.
CSC 413/513: Intro to Algorithms
Lecture. Today Problem set 9 out (due next Thursday) Topics: –Complexity Theory –Optimization versus Decision Problems –P and NP –Efficient Verification.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
COSC 3101A - Design and Analysis of Algorithms 14 NP-Completeness.
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
CSE 332: NP Completeness, Part II Richard Anderson Spring 2016.
CSC 172 P, NP, Etc.
ICS 353: Design and Analysis of Algorithms NP-Complete Problems King Fahd University of Petroleum & Minerals Information & Computer Science Department.
The Theory of NP-Completeness
More NP-Complete and NP-hard Problems
NP-completeness Ch.34.
Design and Analysis of Algorithm
NP-Completeness Yin Tat Lee
Analysis and design of algorithm
ICS 353: Design and Analysis of Algorithms
Chapter 11 Limitations of Algorithm Power
NP-Completeness Yin Tat Lee
The Theory of NP-Completeness
Our old list of problems
Presentation transcript:

Movie theatre service on brightness and volume range leading to maximum clique graph By, Usha Kavirayani

OUTLINE Problem statement Intersection Graphs of Boxes Problem Solution Graph Construction Maximum Clique History NP-Complete Graph Techniques of dealing NP-Complete graphs References

DO YOU WATCH MOVIES???

PROBLEM STATEMENT A new service at a movie theatre is to ask every viewer the range of brightness and the range of sound volume he or she would accept. Every person in the theatre has their own set of requirements on brightness and volume ranges. Some prefer low volume, while some like to enjoy watching a movie with high volume.

PROBLEM STATEMENT (CONT) In similar way every person wants to watch a movie with different brightness range. According to these votes the projectionist chooses that adjustment that satisfies most people. How does he find it? This problem can be solved using maximum clique graph. This problem is NP-complete for general graphs

Intersection Graphs of Boxes As for many geometric interaction models, the first step, finding sufficiently many star graphs is easy for interaction graphs of boxes in R We only have to find the cliques. The problem is the layout step, where we have to place the cliques on the plane in a certain way. After the placement has been done for every vertex x of G, the cliques containing x generate a smallest axis parallel rectangle, which we denote by Sx.

Cont… The obey-  For every vertex x of G, all cliques in Sx must contain x  If Sx and Sy intersect, then they have some clique in common.

PROBLEM SOLUTION Let us consider 8 people watching a movie Each person has different volume range Each person has different brightness range Person number Brightness range Volume range Person Person Person Person Person Person Person Person

Volume Brightness

Graph Construction Depending on the given brightness and volume ranges we shall draw a graph Here the maximum clique is {6,7,8}

MAXIMUM CLIQUE Clique Clique : A clique is a set of pairwise adjacent vertices Maximum clique: The maximum clique problem is to find the clique number, , of a graph, i.e., the size of the largest clique in the graph ω(H) = size of maximum clique of H Maximal Clique Maximal Clique: A clique that cannot be enlarged by adding any more vertices

Maximum Clique of Size 5 EXAMPLE

HISTORY The ‘Clique’ terminology comes from Luce and perry (1949). First Algorithm for solving the Clique problem is that of Harary and Ross (1957). Tarjan and Trojanowski (1977), an early work on the worst-case complexity of the Maximum Clique problem In the 1990s, a breakthrough series of papers beginning with Feige (1991) and reported at the time in major newspapers, showed that it is not even possible to approximate the problem accurately and efficiently.

NP-COMPLETE GRAPH P. Problems that can be solved in polynomial time. ("P" stands for polynomial.) These problems have formed the main material of this course NP. This stands for "nondeterministic polynomial time" where nondeterministic is just a fancy way of talking about guessing a solution. A problem is in NP if you can quickly (in polynomial time) test whether a solution is correct (without worrying about how hard it might be to find the solution). Problems in NP are still relatively easy: if only we could guess the right solution, we could then quickly test it.

NP-COMPLETE GRAPH(CONT) The “hardest” problems in NP are called NP-complete problems (NPC) Why “hardest”? A problem X is NP-complete if and only if- 1. X is in NP and 2. Any problem Y in NP can be converted to an instance of X in polynomial time, such that solving X also provides a solution for Y In other words: Can use algorithm for X as a subroutine to solve Y Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time

Techniques for Dealing with NP-complete Problems The main techniques to solve NP-complete problems are- Backtracking Branch and Bound

BACKTRACKING Backtracking- Explore possibilities; backtrack when doesn’t work. This backtracking algorithm is a method for finding all the subsets in an undirected graph G. Given a graph G with ‘V’ vertices and ‘E’ edges, G = (V, E) Let us take an integer variable k. This algorithm is used in scientific and engineering applications. This algorithm is a Depth First Search algorithm.

The algorithm for finding k-clique in an undirected graph is a NP-complete problem. List out all the possibilities in the sub graph and check for each and every edge. Check for a sub graph in which every node is connected to every other node. Check for all possible Cliques in the graphs. Check the size of clique whether it is equal to k or not.

BRANCH AND BOUND Branch n bound: Variation for case where finding minimum (or maximum) of objective function Where backtracking uses a depth-first search with pruning, the branch and bound algorithm uses a breadth-first search. Starting by considering the root node and applying a lower-bounding and upper- bounding procedure to it. If the bounds match, then an optimal solution has been found and the algorithm is finished If they do not match, then algorithm runs on the child nodes.

Upper bound: e.g. a feasible solution Lower bound: e.g. a solution to an “easier” problem Node elimination: when lower bound >= upper bound Example – Traveling salesman problem

REFERENCES NP-complete - Wikipedia, the free encyclopedia

ANY QUERIES???

THANKYOU