ALS UM 2009 Stochastic Behavior of Magnetic Processes on a Nanoscale Mi-Young Im Center for X-ray Optics, LBNL Berkeley, CA, USA

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Photoemission study of coupled magnetic layers Z. Q. Qiu Dept. of Physics, University of California at Berkeley Outline Motivation Magnetic Phase Transition.
Single - shot magnetic Fourier transform holography at S. Schleitzer* 1, L. Müller 1, C. Gutt 1, R. Frömter 2, M. Rahbar Azad 2, B. Beyersdorff.
Magnetization switching without charge or spin currents J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical.
Optical Control of Magnetization and Modeling Dynamics Tom Ostler Dept. of Physics, The University of York, York, United Kingdom.
1 Ferromagnetic Josephson Junction and Spin Wave Resonance Nagoya University on September 5,2009 Sadamichi Maekawa (IMR, Tohoku University) Co-workers:
From microphotonics to nanophononics October 16th-28th Cargèse, France Elastic, thermodynamic and magnetic properties of nano-structured arrays impulsively.
EE 235 Presentation 2 Brian Lambson X-PEEM and its applications.
STXM Cat Graves Stöhr Group SASS Talk 09/30/09.
Topological properties and dynamics of magnetic skyrmions
Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies Joachim Stöhr SLAC, Stanford University
Ultrafast Manipulation of the Magnetization J. Stöhr Sara Gamble and H. C. Siegmann, SLAC, Stanford A. Kashuba Bogolyubov Institute for Theoretical Physics,
X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way……
Introduction to Micromagnetic Simulation
Università Cattolica del Sacro Cuore
H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation.
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
Stanford - SSRL: J. Lüning W. Schlotter H. C. Siegmann Y. Acremann...students Berlin - BESSY: S. Eisebitt M. Lörgen O. Hellwig W. Eberhardt Probing Magnetization.
VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy J. Stöhr, NEXAFS SPECTROSCOPY,
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
Magnetism and Magnetic Materials
Grazing Incidence X-ray Scattering from Patterned Nanoscale Dot Arrays D.S. Eastwood, D. Atkinson, B.K. Tanner and T.P.A. Hase Nanoscale Science and Technology.
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Nanofabrication H. Hau Wang Argonne National Laboratory.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
Fabrication and magnetic characterization of embedded permalloy structures T.Tezuka, T.Yamamoto, K. Machida, T. Ishibashi, Y. Morishita, A. Koukitu and.
The Story of Giant Magnetoresistance (GMR)
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
The Persistence of Memory Michael S. Pierce Physics Department University of Washington The impact of disorder on magnetic memory and domain configurations.
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology - Near Field Scanning Optical Microscopy - Electrostatic.
Creative Research Initiatives Seoul National University Center for Near-field Atom-Photon Technology Yongho Seo Wonho Jhe School of Physics and Center.
Magnetization dynamics
Plasma diagnostics using spectroscopic techniques
Multiscale analysis of gas absorption in liquids Wylock, Dehaeck, Mikaelian, Larcy, Talbot, Colinet, Haut Transfers, Interfaces and Processes (TIPs) Université.
Acknowledgments: Interfacing ultracold atoms with nanomagnetic A. D. West 1, K. J. Weatherill 1, T. Hayward 2, D. Allwood 2 and I. G. Hughes 1 1 Joint.
University of Wisconsin-Madison Department of Materials Science and Engineering Opportunities for Coherent Scattering in Ferroelectrics and Multiferroics.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Aldo Dell'Oro INAF- Observatory of Turin Detailed analysis of the signal from asteroids by GAIA and their size estimation Besançon November 6-7, 2003.
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
Oak Ridge National Laboratory
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.
Molecular Dynamics Study of Ballistic Rearrangement of Surface Atoms During Ion Bombardment on Pd(001) Surface Sang-Pil Kim and Kwang-Ryeol Lee Computational.
A users viewpoint: absorption spectroscopy at a synchrotron Frithjof Nolting.
Institute for Molecular Science Toshihiko Yokoyama and Takeshi Nakagawa Possibility of Magnetic Imaging Using Photoelectron Emission Microscopy with Ultraviolet.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
The Structure and Dynamics of Solids
Magnetic Force Microscopy
Korea Institute of Science and Technology Seung-Hyeob Lee, Churl-Seung Lee, Seung-Cheol Lee, Kyu-Hwan Lee, and Kwang-Ryeol Lee Future Technology Research.
Theory of current-driven domain wall motion - spin transfer and momentum transfer Gen Tatara 多々良 源 Graduate School of Science, Osaka University Hiroshi.
SUMMARY Magneto-optical studies of a c-oriented epitaxial MgB 2 film show that below 10K the global penetration of vortices is dominated by complex dendritic.
Anomalous Local Transport in MicrofabricatedSr 2 RuO 4 -Ru Eutectic Junction Univ. AISTHiroshi Kambara Satoshi Kashiwaya Tokyo.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
Polarization Dependence in X-ray Spectroscopy and Scattering
X. M. Cheng,1,2 D. J. Keavney2, D. J. Clarke3, 4, O. Tchernyshyov3, M
X-ray photoemission electron microscopy (XPEEM)
P2-D125 Decrement of the Exchange Stiffness Constant of CoFeB thin films with Ar gas pressure. Jaehun Cho, Jinyong Jung, Ka-Eon Kim, Sukmock Lee Chun-Yeol.
Micromagnetic Simulations of Systems with Shape-Induced Anisotropy
Compact Modeling of MTJs for use in STT-MRAM
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Presentation transcript:

ALS UM 2009 Stochastic Behavior of Magnetic Processes on a Nanoscale Mi-Young Im Center for X-ray Optics, LBNL Berkeley, CA, USA

ALS UM 2009 Challenge in Nano-magnetism 1 cm 1 mm 1 µm 1 nmUltra-small Ultrathin FilmsNanowireNanoparticles Novel Manuplating Technique B-fieldSpin currentThermal Controllability Vortex switching Domain wall motion Nano-Magnetism 1 ms 1 ns 1 ps 1 fsUltra-fast Thermal activationDampingThermalizationPrecession

ALS UM 2009 Contents  Background  Statistical Behavior of Magnetic Processes --- Domain Nucleation Process in Ultra Thin Magnetic Film (2D) --- Domain Wall Depinning Process in Notch Patterned Nanowires (1D) --- Vortex- State (chirality) Creation Process in Circular Nanodot Arrays (0D)  Summary

ALS UM 2009 Statistical Behavior Whether the magnetic process is deterministic or stochastic Scientific Point of View Scientific Point of View : century old long-standing question - Is there any unifying physical mechanism? - Is there any specific law, which governs the complicate magnetic phenomena? - Which is dominant factor for determination of statistical nature? Technological Point of View Technological Point of View : substantial issue for application - Is the spin reversal phenomena repeatable? - Is the domain wall motion controllable? - What is the way to acheive the tunable and repeatable spin reversal and dynamics?

ALS UM 2009 Review Irreversible Reversal Reproducible Hysteresis loop J. M. Deutsche et al., Phys. Rev. Lett.(2004) M. S. Pierce et al., Phys. Rev. Lett. (2003)  Macroscopic or k-space  Contradictory DWM at Single Time A. J.Zambano et al., Appl. Phys.Lett. (2004) Switching Field Distribution Justin M. Shaw et al., J. Appl. Phys. (2007)  Theoretical approach  Single measurement Simulation for DW Process E. Martinez et al., Phys. Rev. Lett. (2007) Reversal Process in Nanodot V. Novosad, et al., Phys. Rev. B, (2002)  Direct observation in real space  Statistical measurement

ALS UM 2009 Our Goal Observation S. Parkin US Patent 309, 6,834,005 (2004). G. Meier et al. PRL (2007) UnderstandingControlling S. Parkin US Patent 309, 6,834,005 (2004). Nanodot (0D) Ultrathin Films Nanowires Ultra Thin Film (2D) Nanowire (1D) Nanodot possibility for controllable spin process solution for unsolved-question

ALS UM 2009 Magnetic soft X-ray microscopy at XM-1 H max = 5 kOe (perp.) = 2 kOe (long.) CCD 2048x2048 px 2 Mag ~ 2000 FOV ~ m m  t<70 ps 3rd generation synchrotron source E = 250 eV keV l = 0.7 nm - 5 nm E/E=500 element specificity time resolution XMCD contrast polarization lateral resolution  r < 25 nm

ALS UM 2009 Domain Nucleation Process in Ultra Thin Magnetic Film

ALS UM 2009 Sample: 50–nm (Co 82 Cr 18 ) 87 Pt 13 / 40-nm Ti / 200-nm Si 3 N 4 Magnetic Domain Evolution Patterns +H -H +400 Oe+600 Oe 2m2m +200 Oe 0 Oe -200 Oe Nucelation-mediated magnetization reversal behavior that originated from individual switching of grain M.-Y. Im et al., APL 83, 4589 (2003)

ALS UM 2009 Stochastic Nature 1st cycle 2nd cycle Stochastic and asymmetric nature of magnetic domain nucleation process 1st cycle (left branch) 2nd cycle (right branch) Both cycles (branches) Magnetic domain configurations in repeated hysteretic cycles and different branches

ALS UM 2009 Degree of Stochastic Nature X and Y : same size matrices 1 : existence 0 : nonexistence of domain nucleation in each pixel r=0 : totally different r=1: completely identical Average correlation coefficient among domain configurations Correlation coefficient in both cases increases as magnetization reversal is progressed M.-Y. Im et al., Adv. Mater 20, 1750 (2008)

ALS UM 2009  gyromagnetic ratio  dimensionless damping coefficient parameter h fluc fluctuating magnetic field LLG equation incl. thermal term Micromagnetic simulation of magnetization reversal patterns in repeated hysteretic cycles at 300 K Thermal flucutation effect play a role on stochastic nature in domain nucleation process Thermal Fluctuation Effect

ALS UM 2009 Domain Wall Depinning Process in Notch Patterned Nanowires

ALS UM 2009 Permalloy (Ni 80 Fe 20 ) SEM images Wire width (w): 150, 250, 450 nm Notch depth (N d ): 30, 50 % Film thickness (t): 50, 70 nm Notch Patterned Permalloy Nanowire +H -H MTXM image

ALS UM Oe -383 Oe -413 Oe -430 Oe -489 Oe -141 Oe -189 Oe -236 Oe -259 Oe -371 Oe -24 Oe -106 Oe -124 Oe -129 Oe -319 Oe w= 150 nm w= 250 nm w= 450 nm Domain walls are stopped at precise position Domain Wall Evolution Patterns

ALS UM 2009 Depinning field of domain wall in repeated hysteretic cycles -100 Oe H -530 Oe DW depinning process shows stochastic behavior in repeated measurements Stochastic Nature DW depinning process is not completely governed by DW pinning mechanism

ALS UM 2009 Multiplicity of Domain-wall Types The multiplicity of domain-wall type generated in the vicinity of a notch is responsible for the observed stochastic nature Vortex wall Transverse wall courtesy S. Parkin -440 Oe-450 Oe -485 Oe -490 Oe

ALS UM 2009 Degree of Stochastic Nature Standard deviation of DW depinning field M.-Y. Im et al, Phys. Rev. Lett. 102, (2009) Standard deviation of the depinning field is minimized to below 7 Oe The DW depinning process can be controllable in properly designed nanowire

ALS UM 2009 Vortex State (chirality) Creation Process in Nanodot Arrays

ALS UM 2009 Permalloy Nanodot Arrays MTXM Image Dot Size (r): 200, 400, 600, 800, 1000 nm Film Thickness (t): 40, 70, 100 nm 800 nm Chirality in-plane circular domain structure Polarity out-of-plane component of magnetization Vortex State Ni 80 Fe 20 :t=100 nm, r=800 nm Normalized Images In-plane Out-of-plane 1000 nm 800 nm 600 nm 400 nm 200 nm

ALS UM 2009 Statistical Behavior of Vortex State (chirality) Creation Process Ni 80 Fe 20 (t=40 nm, r=1000 nm, d=200 nm) 2nd1st +x saturation Overlapped images Switched Dots In-plane domain state in repeated measurements and changing the field direction Stochastic nature of creation process of chirality in repeated (different saturation field direction) measurements M.-Y. Im, Peter Fischer, et al., in preparation +x H -x saturation

ALS UM 2009 Summary Statistical Behavior of Magnetic Processes on a Nanoscale  Direct observation of stochastic behavior - Domain nucleation process in ultra thin ferromagnetic system - Domain wall depinning process in nanowire system - Vortex state creation process in nanodot system  Investigation of the origin (thermal fluctuation, multiplicity, aspect ratio, etc.) of stochastic behavior  Answering for long-standing fundamental question on nanomagnetism  Providing of controllable magnetic process

ALS UM 2009 Thanks to… Peter Fischer, B. Mesler, A.E. Sakdinawat, W. Chao, R. Oort, B. Gunion, S.B. Rekawa, P. Denham, E.H. Anderson, D.T. Attwood (CXRO Berkeley USA) S.-C. Shin (KAIST, Taejeon), S.-K. Kim (SNU, Seoul), S.B. Choe (SNU, Seoul), D.-H. Kim (Chungbuk U) L. Bocklage, Judith Moser, A. Vogel, R. Eiselt, M. Bolte, G. Meier, B. Krüger (U Hamburg, Germany) S. Kasai (NIMS in Jap.), K. Yamada, K. Kobayashi, T. Ono (U Kyoto), A. Thiaville (U Paris-Sud) ALS and CXRO staff Thank you for attention!