BROOKHAVEN SCIENCE ASSOCIATES Abstract Vibrating Wire R&D for Magnet Alignment Animesh Jain, NSLS-II Project The alignment tolerance for a string of magnets.

Slides:



Advertisements
Similar presentations
Abstract Mechanical Inspection and Survey Steven Seiler, NSLS-II Project The Survey and Alignment Group is often the first and last to work with the Storage.
Advertisements

Transparent Re-alignment of the Diamond Storage Ring M. Apollonio – Diamond Light Source Ltd ESLS – XXII Workshop, ESRF Grenoble, November 25 th /11/2014M.
Alexander Temnykh Cornell University, Ithaca NY, USA
Magnets for the ESRF upgrade phase II
Multipole Girders - Alignment & Stability (Multipole Girder Alignment technology & R&D) S. Sharma ASD: J. Skaritka, D. Hseuh, V. Ravindranath, G. Miglionico,
October 12, 2006 Heinz-Dieter Nuhn, SLAC / LCLS Undulator Good Field Region and Tuning Strategy 1 Undulator Good Field Region and.
Zachary Wolf Undulator Tuning June 17, 2008 Undulator Tuning Status Z. Wolf, S. Anderson, R. Colon, S. Jansson, S.Kaplunenko,
LCLS Undulators October 14, 2004 Heinz-Dieter Nuhn, SLAC / SSRL MMF Review Introduction to the LCLS Undulators Heinz-Dieter Nuhn,
Zack Wolf Quadrupole Fiducialization October 20, A Vibrating Wire System For Quadrupole Fiducialization Zack Wolf,
Yurii Levashov LCLS Undulator Fiducialization October 20, 2005 *Work supported in part by DOE Contract DE-AC02-76SF LCLS.
BBA Related Issues Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center Undulator.
Enhancement of Single Stretched Wire Measurements of LHC Short Straight Sections Guy Deferne, Nikolay Smirnov, CERN Joe DiMarco, FNAL 14th International.
BROOKHAVEN SCIENCE ASSOCIATES Abstract Role of Magnetic Measurements in Magnet Production Animesh Jain, NSLS-II Project The role played by magnetic measurements.
1 BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Stability Workshop April , 2007 NSLS-II Electrical Systems G. Ganetis NSLS-II Electrical Systems NSLS-II.
BROOKHAVEN SCIENCE ASSOCIATES Abstract Magnetic Specifications and Tolerances Weiming Guo, NSLS-II Project In this presentation I briefly introduced the.
Zachary Wolf Undulator Oct 12, LCLS Undulator Tuning Zack Wolf, Yurii Levashov, Achim Weidemann, Seva Kaplounenko,
BROOKHAVEN SCIENCE ASSOCIATES Abstract Magnet Design Workshop: Magnet Design and Analysis Charles Spataro, NSLS-II Project NSLS-II is a new 3Gev synchrotron.
19 Nov 08,ILC08Cherrill Spencer Rotating Coil System Description 1 Short description of the SLAC rotating coil system used to measure the CIEMAT-made prototype.
1 / 19 M. Gateau CERN – Geneva – CH 14th International Magnetic Measurement Workshop September 2005, Geneva, Switzerland.
Rotating Coils - Giordana Severino – Rotating Coils PACMAN meeting Printed Circuit Coils – Future developments.
S. Russenschuck, CLIC-Workshop, WP2-Pacman, R&D projects on rotating coil probe and stretched wire techniques for CLIC / PACMAN Stephan Russenschuck.
Alignment and Beam Stability
Precision Dispensing Purdue takes advantage of the gantry’s precision by fixing a 150 micron inner diameter dispensing tip to an EFD dispensing pressure.
1 LHC IR Quadrupole Alignment Experience at Fermilab T. Beale, J. DiMarco, J. Nogiec, P. Schlabach, C. Sylvester, J. Tompkins, G. Velev 28 September 2005.
1 BROOKHAVEN SCIENCE ASSOCIATES Abstract Magnet and Girder Integration Lewis Doom, NSLS-II Project National Synchrotron Light Source II (NSLS-II) will.
Permanent Magnet Quadrupoles for the CLIC Drive Beam Jim Clarke, Norbert Collomb, Neil Marks, James Richmond, and Ben Shepherd STFC Daresbury Laboratory,
ASTeC Report for CLIC-UK Jim Clarke on behalf of all ASTeC & Technology Department staff contributing to CLIC-UK STFC Daresbury Laboratory, UK CERN-UK.
Energy calibration at LHC J. Wenninger. Motivation In general there is not much interest for accurate knowledge of the momentum in hadron machines. 
1 BROOKHAVEN SCIENCE ASSOCIATES Storage Ring Commissioning Samuel Krinsky-Accelerator Physics Group Leader NSLS-II ASAC Meeting October 14-15, 2010.
Engineering Division 1 M321/M331 Mirror Switchyard Design Review Tom Miller
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
NLC - The Next Linear Collider Project NLC January Video conference Status of Permanent Quadrupoles James T Volk January 18, 2001.
Low emittance tuning in ATF Damping Ring - Experience and plan Sendai GDE Meeting Kiyoshi Kubo.
Vertical Emittance Tuning at the Australian Synchrotron Light Source Rohan Dowd Presented by Eugene Tan.
Frequency Map Analysis Workshop 4/2/2004 Peter Kuske Refinements of the non-linear lattice model for the BESSY storage ring P. Kuske Linear Lattice My.
CLIC Beam Physics Working Group CLIC pre-alignment simulations Thomas Touzé BE/ABP-SU Update on the simulations of the CLIC pre-alignment.
Magnetic Field Stability Measurements Joe DiMarco 23Oct07.
Booster corrector measurement QA Phil Schlabach 1 May 2007 Proton Source Magnet Meeting.
Lecture 7 Jack Tanabe Cornell University Ithaca, NY Magnetic Measurements.
Warm-Cold Changes in the Sextupole Harmonic in the Quadrupole Magnets for the BEPC-II Luminosity Upgrade Animesh Jain Brookhaven National Laboratory Upton,
F James T Volk Arpil Permanent Magnets for Linear Colliders James T Volk Fermilab.
Physics requirements  mapping spec’s Strategy: analyze measurements to get field Mapping plan: where/how to map Engineering design: sensor, fixtures,
Physics Requirements Sensitivity to Manufacturing Imperfections Strategy  where to map field  measure deviation from ideal model  fit to error tables.
Practical aspects of small aperture quadrupoles Dr Ben Leigh Tesla Engineering Ltd.
1 BROOKHAVEN SCIENCE ASSOCIATES 12th International Workshop on Accelerator Alignment September 10-14, 2012 Fermilab, Batavia, Illinois, U.S.A NSLS-II Girder.
Magnet Alignment Challenges for an MBA Storage Ring* Animesh Jain Superconducting Magnet Division Brookhaven National Laboratory, Upton, NY 11973, USA.
CERN –GSI/CEA MM preparation meeting, Magnetic Measurements WP.
1 BROOKHAVEN SCIENCE ASSOCIATES Beam Stability Overview NSLS-II CFAC Meeting May 8, 2007 S. Krinsky.
Midterm Review 28-29/05/2015 Progress on wire-based accelerating structure alignment Natalia Galindo Munoz RF-structure development meeting 13/04/2016.
WU Lei,WANG Xiaolong, LI Chunhua, QU Huamin Mechanical Group, Accelerator Division Institute of High Energy Physics 13 th International Workshops on Accelerator.
1 BROOKHAVEN SCIENCE ASSOCIATES 13th International Workshop on Accelerator Alignment October 13-17, 2014, IHEP, Beijing, China Smoothing Based on Best-fit.
Rotating Coil Measurement Errors* Animesh Jain Superconducting Magnet Division Brookhaven National Laboratory, Upton, NY 11973, USA 2 nd Workshop on Beam.
BARC First Prototype PXIE Magnets Measurements at Fermilab 9/16/2014Michael Tartaglia, TD/T&I Dept.
Yingshun Zhu Design of Small Aperture Quadrupole Magnet for HEPS-TF
Simulation for Lower emittance in ATF Damping Ring Kiyoshi Kubo Similar talk in DR WS in Frascati, May 2007 Most simulations were done several.
Magnetic Measurements At SLAC
Tutorial On Fiducialization Of Accelerator Magnets And Undulators
NEW UPGRADE TO THE APS MAGNETIC FIELD INTEGRAL MEASUREMENT SYSTEM
BNL-SLAC-Annecy TeleConference
Test of a Permanent Magnet Quadrupole Placed in a Dipole Field
Advanced Photon Source Upgrade Project:
Status of Vibration Measurement Work at BNL
Magnetic Measurements For The LCLS Undulator System
Magnets for the ESRF upgrade phase II
Background With new accelerators delivering beams always smaller and more energetic, requirements for very precise beam alignment become more and more.
TBL quadrupole mover prototype development
Brookhaven National Laboratory Upton, New York , USA
SCU Next Phase Meeting July 8, 2014.
Compensation of Detector Solenoid with Large Crossing Angle
Motivation Technique Simulations LCLS LCLS DOE Review, April 24, 2002
Presentation transcript:

BROOKHAVEN SCIENCE ASSOCIATES Abstract Vibrating Wire R&D for Magnet Alignment Animesh Jain, NSLS-II Project The alignment tolerance for a string of magnets on a girder in NSLS-II is ±30 microns. Such a level of alignment is difficult to meet with manufacturing tolerances and survey alone. It was decided early in the project to use the vibrating wire technique to align magnets on a girder for NSLS-II. This technique was developed at Cornell, and good measurement resolution of ~few microns was already demonstrated in quadrupoles. However, there were no systematic studies available to demonstrate the absolute accuracy of the measured centers. Similarly, very little work was done in applying this technique to sextupoles. In view of this, an R&D program was initiated at NSLS-II in early Extensive work was carried out to identify various sources of errors and means were devised to minimize such errors. A brief description of various aspects studied is presented in this talk. This R&D work culminated in building a state-of- the-art vibrating wire measurement system for NSLS-II and demonstration of absolute accuracy of ~±5 microns for sextupoles. The system is now fully operational for production measurements and over 1/3 of all the multipole girders have already been aligned to well under the required tolerance using this system. *Work performed under auspices of the United States Department of Energy, under contract DE-AC02-98CH

BROOKHAVEN SCIENCE ASSOCIATES Vibrating Wire R&D for Magnet Alignment Magnet Workshop April 11-12, 2012 Animesh Jain for the NSLS-II magnet team

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Introduction For optimum performance, the magnetic axes of quadrupoles and sextupoles in NSLS-II should be aligned to better than ±30 microns. It is difficult to achieve the required accuracy using magnet fiducialization, coupled with optical survey. It is difficult, and expensive, to maintain the required machining and assembly tolerances in a long support structure (~5 m) holding several magnets. It is desirable to achieve the required alignment using direct magnetic measurements in a string of magnets. The vibrating wire technique, developed at Cornell, was deemed to be the most appropriate for this task.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Magnet Alignment R&D Although the vibrating wire technique had been used in the past for quadrupole measurements, very little work had been done in sextupoles. Also, little was known about absolute accuracy. An R&D program was initiated to further develop the technique at BNL and demonstrate the required accuracy for both quadrupoles and sextupoles. Good measurement reproducibility has been achieved as a result of several improvements made over the course of this R&D program, which started in January, The technique has now been used successfully to precision align 30 girders for NSLS-II storage ring. A sustained throughput of 2 girders per week is achieved.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, The Vibrating Wire Technique: Basics An AC current is passed through a wire stretched axially in the magnet. Any transverse field at the wire location exerts a periodic force on the wire, thus exciting vibrations. The vibrations are enhanced if the driving frequency is close to one of the resonant frequencies, giving high sensitivity. The vibration amplitudes are studied as a function of wire offset to determine the transverse field profile, from which the magnetic axis can be derived.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Main Features of the BNL Vibrating Wire System Aerotech ATS03005 stages for wire movement (0.1 micron resolution; 2.5 micron/25 mm accuracy). Wire ends are defined by stainless steel V-notches. Set of 7 fiducials at each end to locate the V-notches. A pair of X-Y wire vibration sensors at each end of the wire. Allows two independent, simultaneous measurements for data verification and redundancy. Computer controlled piezo stages to recenter wire sensors at each scan position to minimize non-linear effects. Completely rewritten acquisition and analysis software with scripting support for flexibility in experiment control.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Wire End Support (V-notch) Fiducials relate the wire ends to the overall girder coordinate system. Stainless V-notch Fiducial nests (7) Holes to help locate the notch relative to fiducials A V-notch with radius much smaller than the wire was chosen. The wire position is thus insensitive to the actual radius of the V-notch.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Wire Vibration Sensors As the wire is moved horizontally or vertically, the position of the wire relative to the sensor changes slightly (~ a few microns) due to imperfections in the stage motion. This causes a change in the operating point of the sensor. An automated piezo stage was added to keep the wire “centered” in the sensors during a scan. Coarse manual adjustment in orthogonal axis X-Sensor Fine, automated adjustment along measurement axis using piezo stages Y-Sensor The wire motion sensors are inexpensive photointerrupters (Model GP1S094HCZ0F) A pair of sensors is located on both ends of the wire, thus allowing two simultaneous measurements.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Complete Wire Mover Assembly Camera to ensure wire is correctly seated in the notch Light Shades to reduce noise from stray light V-notch holder with fiducials A similar assembly is present at the other end of the wire, except that the pulley and weight are replaced by a fixed wire end.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Alignment Issues Studied Wire sag correction (presented at IMMW15) Detector sensitivity to orthogonal motion Sensitivity to Yaw/Pitch of magnets Accuracy of quadrupole center measurement Accuracy of sextupole center measurement Background field correction Ability to precisely move magnets and secure to the girder. Reproducibility of the girder vertical profile. Stability of magnet alignment during transportation and handling of the girder.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Detector Sensitivity to Orthogonal Motion Measured signal is contaminated by sensitivity to motion along the orthogonal axis, thus causing errors in the measurement of magnetic center. A rigorous analysis has shown that the error in horizontal/vertical center is minimized if wire is scanned at the vertical/horizontal center in both quadrupoles and sextupoles. This implies that a rough center must be found first before the final scan.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Resonant Mode to Use: Yaw/Pitch Sensitivity Should have a maxima near the axial center of the magnet being measured. Preferably even numbered modes should be used to avoid contribution from any axially uniform background fields (e.g. earth ’ s field). It may be impractical to find a mode with maxima exactly at the axial center for every magnet on the girder. This causes sensitivity to yaw and pitch. One should choose a mode that minimizes sensitivity to yaw and pitch without sacrificing signal strength.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Sensitivity to Yaw and Pitch Signal for mode = n is proportional to B yn (for a given detector position) In a quadrupole magnet with offset x 0 and yaw angle , located at z = z mag : Error in center determination due to yaw: A similar analysis for sextupoles is much more tedious, but the same expression for  x 0 is obtained in the end! A similar expression applies to vertical offset and pitch angle. z mag = magnet axial position; G = Gradient L mag = magnetic length L = wire length

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Yaw/Pitch Sensitivity in Quad Measurements

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Sextupole Measurements Using B y and B x Obtaining centers from B y vs. x and B y vs. y plots uses only one set of sensors, and requires quadratic fits. One could also use scans of B x vs. x (or y ) for various values of y (or x ). These plots are expected to be linear with slopes proportional to offsets in y (or x ) direction. Doing three such scans allows to obtain centers from both B x and B y data. With 2 sets of sensors, one gets four values of magnetic center.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Yet Another Way to Measure Sextupoles Fit measured data to a truncated Fourier Series, giving quadrupole and sextupole terms. Both X and Y Centers can be obtained using any of the 4 detectors in a single scan.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Comparison of Sextupole Data Using B x and B y Consistency comparable to quadrupole measurements is obtained in more recent data.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Issue of Background Fields in Sextupole Meas. There is a significant quadrupole background field from quadrupole magnet(s) even when these are unpowered. Based on rotating coil data, the remnant integrated quadrupole field could amount to a change in horizontal center by hundreds of microns, depending on quad position and the mode used for sextupole measurements. The vertical center measurement is not affected because B y (or B x ) is independent of y (or x ) in a normal quadrupole field. Effectiveness of background correction has been tested by measuring a sextupole in the presence of a quadrupole which was either unpowered, or was powered at 2 A (apparent center shift of ~600 microns). Corrected center after background subtraction was within ±5 microns of the value without large background.

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Alignment Stability

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Alignment Stability

BROOKHAVEN SCIENCE ASSOCIATES NSLS-II Magnet Workshop: April 11-12, Summary A state-of-the-art vibrating wire system has been built for aligning magnets for NSLS-II. The system incorporates several novel features to improve and ensure the accuracy of measurements (e.g., dual sets of sensors, recentering of sensors). Sources of errors have been studied in detail, and the measurements are tailored to minimize such errors. Excellent consistency and repeatability of measurements is demonstrated. System is being used successfully for aligning magnets on girders for NSLS-II, with 1/3 of multipole girders already completed.