FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.

Slides:



Advertisements
Similar presentations
June , th International Symposium on Molecular Spectroscopy Millimeter and Sub-millimeter Spectroscopy of CrCCH (X 6 Σ + ) Jie Min and L.M.
Advertisements

High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
61 st Symposium on Molecular Spectroscopy June 22, 2006 Completing the 3d Metal Fluoride Series: Pure Rotational Spectroscopy of ZnF (X 2  + ) Michael.
Millimeter-Wave Studies of the Isotopologues of IZnCH 3 (X 1 A 1 ) : Geometric Parameters and Evidence for Zinc Insertion M. P. BUCCHINO and L. M. ZIURYS.
Microwave Rotational Spectroscopy
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
June 22, th Symp. on Molec. Spectrosc. Laboratory Detection of ClZnCH 3 (X 1 A 1 ): Further Evidence for Zinc Insertion Matthew P. Bucchino and.
The Millimeter/Submillimeter Spectrum of the CCP (X 2  r ) Radical DeWayne T. Halfen Steward Observatory, Arizona Radio Observatory, University of Arizona.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of CrS (X 5  r ): Continued Studies of the 3d Transition.
HYPERFINE SPLITTING AND ROTATIONAL ANALYSIS OF THE DIATOMIC MOLECULE ZINC MONOSULFIDE, ZnS DANIEL J. FROHMAN, G. S. GRUBBS II AND STEWART E. NOVICK O.S.U.
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
62 nd International Symposium on Molecular Spectroscopy June 18-22, 2007 The Pure Rotational Spectra of FeCN (X 6  i ) and FeNC (X 6  i ): It Had to.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
A New E-Band (60 – 90 GHz) Fourier Transform Millimeter-wave Spectrometer DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
65 th International Symposium on Molecular Spectroscopy June 21, 2010 Lindsay N. Zack Brent J. Harris Matthew P. Bucchino Ming Sun Lucy M Ziurys Department.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
June 21, th International Symposium on Molecular Spectroscopy Fourier-Transform Microwave Spectroscopy of FeCN (X 4  i ): Confirmation of the.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of TiS (X 3  r ) in all Three Spin Components Robin.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Dept. of Chemistry University of Arizona A. Janczyk L. M. Ziurys The Millimeter/Submillimeter Spectrum of AlSH (X 1 A) : Further Investigation of the Metal.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
The Submillimeter/THz Spectrum of AlH (X 1 Σ + ), CrH (X 6 Σ + ), and SH + (X 3 Σ - ) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
The Pure Rotational Spectrum of KO
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Bob Grimminger and Dennis Clouthier
THE STRUCTURE OF PHENYLGLYCINOL
Laser Ablation Spectroscopy of SrCCH and SrNC
The Pure Rotational Spectrum of FeO+ (X6S+)
The rotational spectrum of the urea isocyanic acid complex
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
John Mullaney Newcastle University
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College J. MIN, M. P. BUCCHINO, D. T. HALFEN and L. M. ZIURYS Department of Chemistry, Astronomy and Steward Observatory, University of Arizona

Metal Acetylides Experimental observation of CuCCH (X 1  + ) –Sun et al (Ziurys group) –MM-wave and FTMW measurements of several isotopologues –FTMW  discharge assisted laser ablation spectroscopy –Cu and D hyperfine parameters determined –Geometric and bonding properties Study other metal acetylides using the FTMW –AlCCH(MH ), ZnCCH (RC03), MgCCH (RC04) –Extensive millimeter-wave studies exist for the alkali metal acetylides –Further investigate metal-ligand bonding  hyperfine parameters

Alkali-Metal Acetylides: Previous Work LiCCH and 6 Li, 13 C & D isotopologues; ground and 5 vibrational states (Apponi, Brewster and Ziurys, 1998) NaCCH and D isotopologues; ground and 5 vibrational states (Brewster et al, 1999) KCCH and D isotopologues; ground vibrational state (Xin and Ziurys, 1998) Linear molecular geometries, structural parameters determined, no hyperfine splitting resolved Use FTMW to measure metal hyperfine parameters to investigate metal-ligand bonding character

Fourier Transform Microwave Spectrometer 4 – 40 GHz Cyropumped vacuum chamber Fabry-Perot cavity Supersonic jet 40° relative to mirror axis 400 kHz scan increments Ziurys Laboratory FTMW

Fourier Transform Microwave Spectrometer Ablation Laser Molecular Jet Cavity Mirror

Discharge Assisted Laser Ablation (DALAS) 40 psi backing pressure (open 500  s) Ablation laser: Nd:YAG (532nm, 200 mJ per pulse; 10 Hz rep rate; 990  s delay) DC discharge 1000 V (1000  s) shots averaged Alkali metal vapor reacted with 0.3% HCCH or DCCD in Ar S/N increased by ~ 10x with discharge

Alkali Metal Rods Al support rod 3 cm long notch, diameter 2 mm smaller Na and K pressed into notch under Ar Li superglued into notch under Ar Only alkali metal portion ablated Previous work ablated corresponding salt

Initial Search Millimeter-wave data of alkali metal acetylides used to predict frequencies of low J transitions Metal hyperfine constants from alkali chlorides used to estimate hyperfine splittings Searched 10 MHz section centered on a rotational transition

NaCCH (X 1 Σ + ) Spectrum ~

KCCH (X 1 Σ + ) Spectrum ~

LiCCH (X 1 Σ + ) Spectrum ~

Lines and Assignments MCCH LiCCHNaCCH KCCH J‘  J" F'  F" obs obs -  calc obs obs -  calc obs  obs -  calc NaCCH and KCCH  J = 3  2 and J = 4  3 Individual Hyperfine Lines Observed: LiCCH (3), NaCCH (19), KCCH (21)

Constants MCCH Parameter (MHz)LiCCH NaCCH KCCH B (32) (46) (86) (10) (77) (31) D (11) (14) (64) (48) (43) (13) H2.79(99)x (1.3)x (14)x (70) x (10)x (22)x10 -8 L3.257(76)x (13)x eQq (M)0.378(47)-7.264(20)-6.856(18) rms Combined fit with previous millimeter-wave data; 3  uncertainties Nuclear spin-rotation constant (C I ) could not be reliably determined for each metal

LiCCD (X 1 Σ + ) Spectrum ~ NaCCD and KCCD  J = 2  1, J = 3  2 and J = 4  3 Individual Hyperfine Lines Observed: LiCCD (7), NaCCD (16), KCCD (30)

Constants MCCD Parameter (MHz)LiCCD NaCCD KCCD B (21) (92) (91) (59) (58) (14) D (18) (69) (95) (88) (19) (21) H2.88(18)x (36)x (11)x10 -9 L1.77(20) x eQq (M)0.272(37)-7.442(47)-6.873(14) eQq (D)0.152(33)0.193(48)0.157(20) rms Combined fit with previous millimeter-wave data; 3  uncertainties Nuclear spin-rotation constant (C I ) could not be reliably determined for each metal or deuterium

Hyperfine Parameters (eQq) (MHz) Species 7 Li 23 Na 39 K MF (12) (15) (10) M 35 Cl (50) (60) (3) MOH0.2958(15)-7.584(52)-7.454(52) MBH (31)-4.256(24) MCCH0.378(47)-7.264(20)-6.856(18) MCCD0.272(37)-7.442(47)-6.873(14) Nuclear quadrupole coupling constants small in magnitude and similar to other alkali-containing molecules  consistent with M + L - structure Alkali-metal acetylides  bonding largely ionic SpeciesLiCCDNaCCDKCCDCuCCD eQq(D)0.152(33)0.193(48)0.157(20)0.214(23)

Future Work DALAS + Alkali Metal Pressed Rods May be a good synthetic method for other alkali metal molecules LiOD, NaOD, KOD MNH 2, MND 2 MSH, MSD MCH 3, MCD 3 Further investigate ionic/ covalent bonding character Funding : Canisius College & NSF