Network and Service Assurance Laboratory Analysis of self-similar Traffic Using Multiplexer & Demultiplexer Loaded with Heterogeneous ON/OFF Sources Huai.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 1 Internet Traffic Modeling Date: Authors: NameAffiliationsAddressPhone .
Advertisements

Copyright © 2005 Department of Computer Science CPSC 641 Winter Self-Similar Network Traffic The original paper on network traffic self-similarity.
Introduction Background Knowledge Workload Modeling Related Work Conclusion & Future Work Modeling Many-Task Computing Workloads on a Petaflop Blue Gene.
Variance reduction techniques. 2 Introduction Simulation models should be coded such that they are efficient. Efficiency in terms of programming ensures.
2014 Examples of Traffic. Video Video Traffic (High Definition) –30 frames per second –Frame format: 1920x1080 pixels –24 bits per pixel  Required rate:
2  Something “feels the same” regardless of scale 4 What is that???
A New Approach for Accurate Modelling of Medium Access Control (MAC) Protocols Presenter: Moshe Zukerman ARC Centre for Ultra Broadband Information Networks.
1 Self-Similar Ethernet LAN Traffic Carey Williamson University of Calgary.
CMPT 855Module Network Traffic Self-Similarity Carey Williamson Department of Computer Science University of Saskatchewan.
On the Self-Similar Nature of Ethernet Traffic - Leland, et. Al Presented by Sumitra Ganesh.
1 17. Long Term Trends and Hurst Phenomena From ancient times the Nile river region has been known for its peculiar long-term behavior: long periods of.
Björn Landfeldt School of Information Technologies Investigating a theoretical model Bjorn Landfeldt University of Sydney.
Statistics & Modeling By Yan Gao. Terms of measured data Terms used in describing data –For example: “mean of a dataset” –An objectively measurable quantity.
802.11n MAC layer simulation Submitted by: Niv Tokman Aya Mire Oren Gur-Arie.
A gentle introduction to fluid and diffusion limits for queues Presented by: Varun Gupta April 12, 2006.
Small scale analysis of data traffic models B. D’Auria - Eurandom joint work with S. Resnick - Cornell University.
OS Fall ’ 02 Performance Evaluation Operating Systems Fall 2002.
Network Traffic Measurement and Modeling CSCI 780, Fall 2005.
A Nonstationary Poisson View of Internet Traffic T. Karagiannis, M. Molle, M. Faloutsos University of California, Riverside A. Broido University of California,
Performance Evaluation
Self-Similarity in Network Traffic Kevin Henkener 5/29/2002.
1 Interesting Links
CSE 561 – Traffic Models David Wetherall Spring 2000.
Origins of Long Range Dependence Myths and Legends Aleksandar Kuzmanovic 01/08/2001.
Connection Admission Control Schemes for Self-Similar Traffic Yanping Wang Carey Williamson University of Saskatchewan.
Self-Similar through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level Walter Willinger, Murad S. Taqqu, Robert Sherman,
CS 6401 Network Traffic Characteristics Outline Motivation Self-similarity Ethernet traffic WAN traffic Web traffic.
1 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent.
Pipelined Two Step Iterative Matching Algorithms for CIOQ Crossbar Switches Deng Pan and Yuanyuan Yang State University of New York, Stony Brook.
The Effects of Systemic Packets Loss on Aggregate TCP Flows Thomas J. Hacker May 8, 2002 Internet 2 Member Meeting.
Internet Traffic Modeling Poisson Model vs. Self-Similar Model By Srividhya Chandrasekaran Dept of CS University of Houston.
Self-Similar Traffic COMP5416 Advanced Network Technologies.
Self-Similarity of Network Traffic Presented by Wei Lu Supervised by Niclas Meier 05/
1 Chapters 9 Self-SimilarTraffic. Chapter 9 – Self-Similar Traffic 2 Introduction- Motivation Validity of the queuing models we have studied depends on.
Panel Topic: After Long Range Dependency (LRD) discoveries, what are the lessons learned so far to provide QoS for Internet advanced applications David.
References for M/G/1 Input Process
Network Traffic Modeling Punit Shah CSE581 Internet Technologies OGI, OHSU 2002, March 6.
Traffic Modeling.
Research on cloud computing application in the peer-to-peer based video-on-demand systems Speaker : 吳靖緯 MA0G rd International Workshop.
The University of Texas at Arlington Topics in Random Processes CSE 5301 – Data Modeling Guest Lecture: Dr. Gergely Záruba.
1 Exponential distribution: main limitation So far, we have considered Birth and death process and its direct application To single server queues With.
Traffic Modeling.
1 FARIMA(p,d,q) Model and Application n FARIMA Models -- fractional autoregressive integrated moving average n Generating FARIMA Processes n Traffic Modeling.
MIT Fun queues for MIT The importance of queues When do queues appear? –Systems in which some serving entities provide some service in a shared.
COMPSAC'14 - N. Larrieu /07/ How to generate realistic network traffic? Antoine VARET and Nicolas LARRIEU COMPSAC – Vasteras – July the 23.
Link Dimensioning for Fractional Brownian Input Chen Jiongze PhD student, Electronic Engineering Department, City University of Hong Kong Supported by.
Performance Analysis of Real Traffic Carried with Encrypted Cover Flows Nabil Schear David M. Nicol University of Illinois at Urbana-Champaign Department.
1 Self Similar Traffic. 2 Self Similarity The idea is that something looks the same when viewed from different degrees of “magnification” or different.
June 10, 1999 Discrete Event Simulation - 3 What other subsystems do we need to simulate? Although Packets are responsible for the largest amount of events,
Self-generated Self-similar Traffic Péter Hága Péter Pollner Gábor Simon István Csabai Gábor Vattay.
Burst Metric In packet-based networks Initial Considerations for IPPM burst metric Tuesday, March 21, 2006.
Analysis of RED Goal: impact of RED on loss and delay of bursty (TCP) and less bursty or smooth (UDP) traffic RED eliminates loss bias against bursty traffic.
OPERATING SYSTEMS CS 3530 Summer 2014 Systems and Models Chapter 03.
Efficient Gigabit Ethernet Switch Models for Large-Scale Simulation Dong (Kevin) Jin David Nicol Matthew Caesar University of Illinois.
Performance Evaluation of Long Range Dependent Queues Performance Evaluation of Long Range Dependent Queues Chen Jiongze Supervisor: Moshe ZukermanCo-Supervisor:
Risk Analysis Workshop April 14, 2004 HT, LRD and MF in teletraffic1 Heavy tails, long memory and multifractals in teletraffic modelling István Maricza.
An Efficient Gigabit Ethernet Switch Model for Large-Scale Simulation Dong (Kevin) Jin.
1 Internet Traffic Measurement and Modeling Carey Williamson Department of Computer Science University of Calgary.
Notices of the AMS, September Internet traffic Standard Poisson models don’t capture long-range correlations. Poisson Measured “bursty” on all time.
1 Interesting Links. On the Self-Similar Nature of Ethernet Traffic Will E. Leland, Walter Willinger and Daniel V. Wilson BELLCORE Murad S. Taqqu BU Analysis.
OPERATING SYSTEMS CS 3502 Fall 2017
Weldisson Ferreira Ruas José Marcos C. Brito
Internet Traffic Modeling
Interesting Links.
Minimal Envelopes.
Notices of the AMS, September 1998
Presented by Chun Zhang 2/14/2003
CPSC 641: Network Traffic Self-Similarity
Scaling behavior of Human dynamics in financial market
GhostLink: Latent Network Inference for Influence-aware Recommendation
Presentation transcript:

Network and Service Assurance Laboratory Analysis of self-similar Traffic Using Multiplexer & Demultiplexer Loaded with Heterogeneous ON/OFF Sources Huai Huang Dept. of Electronic Engineering Queen Mary, University of London

Network and Service Assurance Laboratory Slide 2 Overview Background Knowledge Motivation & Model description Results & Analysis Achievements of the Research Questions from the Research

Network and Service Assurance Laboratory Slide 3 Background Knowledge Traditional Poisson-based models for Voice and Early Data Networks (before early 1990s) Packet arrivals: Call arrivals (Poisson) Exponential holding times Traditional network traffic models, most of which assume Markovian characteristics, have been used extensively as an attractive means to the simulation and control of the networks before the early 1990s; in many cases they prove adequate for evaluating network performance and show their practicality.

Network and Service Assurance Laboratory Slide 4 Background knowledge Big Bang from 1993 “ On the Self-Similar Nature of Ethernet Traffic ” Will E. Leland, Walter Willinger, Daniel V. Wilson, Murad S. Taqqu Extract from abstract : “We demonstrate that Ethernet local area network (LAN) traffic is statistically self- similar, that none of the commonly used traffic models is able to capture this fractal behavior, that such behavior has serious implications for the design, control, and analysis of high-speed…” Evidence of Self-similarity and Long-Range Dependence in network traffics Burstiness on multiple time scales Highly variable traffic Heavy-tailed distributions of file sizes and corresponding transmission times That Changed Everything…..

Network and Service Assurance Laboratory Slide 5 Background Knowledge Self-Similarity Let X = (X k : k>0) be stationary process representing the amount of data transmitted in consecutive short time periods. Let X k (m) = 1/m  km i=(k-1)m+1 X i where m≥ 1 denote the m aggregated process. X is self-similar if X and m 1-H X (m) have the same variance and autocorrelation ( with Hurst parameter H ). Long-range Dependency ( LRD ) Autocorrelation r(k)  k -β, as k  , which means the process follows a power law, rather than exponential decaying.( 0<β<1 ) H=1-β/2, so self-similar process shows long-range dependency if 0.5<H<1 Heavy-tailed Distribution A distribution of a random variable P is said to be heavy-tailed if P{ X > x } ≈ x -α, as x   & 0 < α< 2 If α≤ 1, the distribution has an infinite mean. If α≤ 2, the distribution has an infinite variance.

Network and Service Assurance Laboratory Slide 6 Background knowledge

Network and Service Assurance Laboratory Slide 7 Self-Similar traffic V.S. Poisson Traffic

Network and Service Assurance Laboratory Slide 8 LRD V.S. SRD LRD traffic streams are highly correlated at every time scales. SRD traffic streams has negative exponentially distributed inter arrival times.

Network and Service Assurance Laboratory Slide 9 Heavy-tailed V.S. Exponential The PDF of the Pareto (Heavy- tailed)distribution decays slowly as the batch size increases. In log- log plot, it decays linearly and have very big batch size. While the PDF of the Exponential distribution decays very fast as the batch size increases.

Network and Service Assurance Laboratory Slide 10 Background knowledge Multiplexer is a key element of the modern high-speed flow networks in that statistical multiplexing allows increasing network utilization considerably. It allows statistical multiplexing of different sources to make efficient use of the network resources. Modelling the multiplexer loaded with heterogeneous sources has been done to get the performance evaluation of the aggregate traffic. These studies get many useful results.

Network and Service Assurance Laboratory Slide 11 Motivation & Model description However, most of them just considered multiplexing the traffic, and didn’t investigate the statistic features of the individual traffic flows after they divided by the demultiplexer. Actually, it is very interesting and valuable to study on the related issues.

Network and Service Assurance Laboratory Slide 12 ON/OFF Model for traffic generation We choose ON/OFF model is because it is practical and popular for network traffic modeling, and matches very well with the real network activities: active and silent. We use two methods to generate the ON/OFF input traffic: using the Pareto and Exponential functions, and using the chaotic maps.

Network and Service Assurance Laboratory Slide 13 Traffic Pattern for input sources

Network and Service Assurance Laboratory Slide 14 Results & Analysis ( 1 million run time) Take case ‘0110’ as an example, from the simulation, we can obtain the statistic features of the ON and OFF periods for both the inputs and outputs. From the figures we can see the outputs share the same attribute as the inputs. The input is ‘0110’, and the output is ‘0110’ too. We can also get the statistics of the buffer state and delay time from the simulation.

Network and Service Assurance Laboratory Slide 15 Simulation results in brief ( 1 million ) A tick or cross in the column ‘Unclear about the Output’ indicates whether or not there is the need for further investigating about the output. A tick or cross in the column ‘Big Delays for the packets through the server’ indicates whether or not there are big delays for the packets, and that means whether or not we need apply some control algorithms on the server to reduce the big delays. In the table, ‘0’ means the sojourn time of the traffic is exponentially distributed; ‘1’ means the sojourn time of the traffic is Pareto distributed; We use ‘2’ denotes the statistic feature is not ‘0’ or ‘1’, or we are just unsure about what it is.

Network and Service Assurance Laboratory Slide 16 The traffic Pattern ‘2’ in the results We highlight the ‘2’, and we use the log-log plot and the lineal-log plot with different scales to show what’s the difference between ‘0’,’1’ and ‘2’. In the log-log plots, We can clearly see from the graphs that the highlighted ‘2’ looks like exponential distribution, and it doesn’t have any sojourn time larger than 100 timeslots. In the linear-log plot, the Exponential-distributed traffic looks like a straight line, but the highlighted ‘2’ turns outside just like the Pareto distribution.

Network and Service Assurance Laboratory Slide 17 Results & Analysis (100 million timeslot) Though the simulations on the magnitude of 100 millions, we clear out the ambiguous situations. Although we have ‘2’ in the final results, but in here, the ‘2’ is not unclear. It is just another kind of the traffic which is not behaving like Pareto or Exp.

Network and Service Assurance Laboratory Slide 18 Results & Analysis (100 million timeslot) As we can see in the graphs, the ‘2’ is almost as the Exp distributed before its probability reaches , after that, it looks like a straight line as Pareto distributed input source but with much smaller tails.

Network and Service Assurance Laboratory Slide 19 Results & Analysis (100 million timeslot) This is the final result of the outputs of the MUX\DEMUX network.

Network and Service Assurance Laboratory Slide 20 Results & Analysis Validation of the simulation result The Multiplexed outputs, does it agree with the results done by other people? The Queue Analysis, same question. Using different Parameters for the Simulation Highlight on some interesting cases to investigate further. Find out more subtle interaction between the traffic sources, especially about the Heavy-tailed sojourn time of the traffic.

Network and Service Assurance Laboratory Slide 21 Multiplexed & Demultiplexed outputs

Network and Service Assurance Laboratory Slide 22 Queue Analysis of the simulation We find that if the ON period distribution is Pareto distributed in any of the input sources, the Probability Density Function (PDF) of the queue decays like a straight line, otherwise, it decays exponentially fast.

Network and Service Assurance Laboratory Slide 23 Sim using Different Parameters We choose 0101, 0110, 0111, 1011, 1111 to study on, and we reach a rough conclusion below: 1.The MUX/DEMUX network doesn't change the attribute of the heavy-tailed distribution of the OFF period very much. 2.The MUX/DEMUX network tends to change the attribute of the heavy-tailed distribution of the ON period a lot. 3.If a heavy-tailed ON sojourn-time traffic multiplexed with a exponential ON sojourn-time traffic, usually, the heavy-tailed ON will be less burst than the original traffic. 4.If a heavy-tailed ON sojourn-time traffic multiplexed with a another heavy-tailed ON sojourn-time traffic, usually, the lighter one will remain almost the same. Meanwhile, the heavier one will be less burst than the original traffic, in some cases, can change from the heavy-tailed distribution to the exponential distribution. 5.As an exception in 4, for case 1010, both of the heavy-tailed ON sojourn-time are changed from heavy-tailed distribution to the exponential distribution.

Network and Service Assurance Laboratory Slide 24 ACF Analysis of the Simulation We are not only interested in the tail distribution of the traffic, but we are also very interested in the LRD and SRD attributes of the traffic. We use autocorrelation function (ACF) to measure the LRD or SRD attributes of the traffic. And we divide the ten cases into two groups: Group 1 : The outputs share the same pattern with the inputs. Group 2 : The outputs are different with the inputs.

Network and Service Assurance Laboratory Slide 25 ACF Analysis of the Sim ( Group 1) For the cases in the first group, we find that the correlation structure of the outputs remain the same as the inputs, just as they do in the distribution of the ON/OFF sojourn-time. The example figure is the case 0001.

Network and Service Assurance Laboratory Slide 26 ACF Analysis of the Sim ( Group 2) For the case 0010(Output 0000), we can easily find the output two was changed into a correlated traffic by the queue, while the output one shared the same pattern with the input one. For the case 0011(Output 2001), the result is very similar to the case 0010.

Network and Service Assurance Laboratory Slide 27 ACF Analysis of the Sim ( Group 2) For the case 0111(Output 2111 or 1111), we can easily find both of the outputs share the same pattern with the inputs.

Network and Service Assurance Laboratory Slide 28 ACF Analysis of the Sim ( Group 2) For the case 1010(Output 0000), we can clearly see there exist strong correlation within the sources. And another interesting phenomenon about this case is the AutoCorrelation Function of the outputs go up and down from the beginning, appear as two separate line in the log-log scale, and finally converge to one line. For the case 1011(Output 1001), the result is very similar to the case 1010.

Network and Service Assurance Laboratory Slide 29 Achievements of the Research We have successfully obtained the detailed and accurate results for the whole situation of the 10 cases for two kinds of traffic source models: one, traffic sources generated by Pareto and Exponential functions; and two, traffic sources generated by chaotic maps. We analyzed the subtle interaction of the traffic sources by using different parameters and reach a conclusion. We find some new traffic sources don’t have heavy- tailed distribution, but at the same time, possess the LRD correlation structure. These sources can not be modeled with the chaotic maps or random processes as far as we know.

Network and Service Assurance Laboratory Thank you !