8. Transport Protocol and UDP 8.1 Transport protocol : End-to-end protocol –IP: Host to host packet delivery –Transport: Process to process communication.

Slides:



Advertisements
Similar presentations
1 Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie Chapter 5 End-to-End Protocols Copyright © 2010, Elsevier Inc. All rights.
Advertisements

COT 4600 Operating Systems Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 3:00-4:00 PM.
Courtesy: Nick McKeown, Stanford Umar Kalim, NIIT Robin Kravets, UIUC 1 Transmission Control Protocol (TCP), Tahir Azim.
TCP - Part I Relates to Lab 5. First module on TCP which covers packet format, data transfer, and connection management.
Slide Set 13: TCP. In this set.... TCP Connection Termination TCP State Transition Diagram Flow Control How does TCP control its sliding window ?
CS 6401 Transport Control Protocol Outline TCP objectives revisited TCP basics New algorithms for RTO calculation.
Computer Networks Chapter 5: End-to-End Protocols
1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A note on the use.
1 Chapter 5 End-to-End Protocols Outline 5.1 UDP 5.2 TCP 5.3 Remote Procedure Call.
TCP & UDP - Protocol Details Yen-Cheng Chen
1 Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie Chapter 5 End-to-End Protocols Copyright © 2010, Elsevier Inc. All rights.
1 CS 4396 Computer Networks Lab Transmission Control Protocol (TCP) Part I.
1 Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie Chapter 5 End-to-End Protocols Copyright © 2010, Elsevier Inc. All rights.
CSS432: End-to-End Protocols 1 CSS432 End-to-End Protocols Textbook Ch5.1 – 5.2 Professor: Munehiro Fukuda.
Reliable Byte-Stream (TCP)
1 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
End-to-End Protocols Outline Reliable Byte-Stream Simple Demultiplexer
6-May-154/598N: Computer Networks End-to-End Protocols Underlying best-effort network –drop messages –re-orders messages –delivers duplicate copies of.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 14 – February 23, 2010.
TCP 4/15/2017.
Fundamentals of Computer Networks ECE 478/578 Lecture #21: TCP Window Mechanism Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University.
CSE 461: Transport Layer Connections. Naming Processes/Services  Process here is an abstract term for your Web browser (HTTP), servers (SMTP),
TDC561 Network Programming Camelia Zlatea, PhD Week 10: Performance Aspects of End-to-End (Transport)
Spring 2003CS 4611 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
TCP. Learning objectives Reliable Transport in TCP TCP flow and Congestion Control.
Spring 2002CS 4611 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
TCP : Transmission Control Protocol Computer Network System Sirak Kaewjamnong.
1 Internet Engineering University of ilam Dr. Mozafar Bag-Mohammadi Transport Layer.
SMUCSE 4344 transport layer. SMUCSE 4344 transport layer end-to-end protocols –transport code runs only on endpoint hosts encapsulates network communications.
TCP1 Transmission Control Protocol (TCP). TCP2 Outline Transmission Control Protocol.
1Spring 2003, COM1337/3501 Lecture 5: End-to-End Protocols Textbook: Computer Networks: A Systems Approach, L. Peterson, B. Davie, Morgan Kaufmann Chapter.
1 Introduction to Computer Networks University of ilam Dr. Mozafar Bag-Mohammadi Transport Layer.
Chapter 5 : End-to-End (Transport) Protocols Summary of underlying best-effort network capabilities (host-host) –drops packets or datagrams –re-orders.
CSE Computer Networks Prof. Aaron Striegel Department of Computer Science & Engineering University of Notre Dame Lecture 14 – February 23, 2010.
Spring 2010CS 3321 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
1 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
UDP and TCP Basics Rocky K. C. Chang 18 October 2010.
Spring 2008CPE Computer Networks1 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control.
1 End-to-End Protocols User Datagram Protocol (UDP) Transmission Control Protocol(TCP)
1 Reliable Byte-Stream (TCP) Outline Connection Establishment/Termination Sliding Window Revisited Flow Control Adaptive Timeout.
Ilam University Dr. Mozafar Bag-Mohammadi 1 Transport Layer.
CSE/EE 461 Sliding Windows and ARQ. 2 Last Time We finished up the Network layer –Internetworks (IP) –Routing (DV/RIP, LS/OSPF) It was all about routing:
1 End-to-End Protocols UDP TCP –Connection Establishment/Termination –Sliding Window Revisited –Flow Control –Congestion Control –Adaptive Timeout.
11 CS716 Advanced Computer Networks By Dr. Amir Qayyum.
1 Transmission Control Protocol (TCP) RFC: Introduction The TCP is intended to provide a reliable process-to-process communication service in a.
Two Transport Protocols Available Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Provides unreliable transfer Requires minimal – Overhead.
3. END-TO-END PROTOCOLS (PART 1) Rocky K. C. Chang Department of Computing The Hong Kong Polytechnic University 22 March
Univ. of TehranIntroduction to Computer Network1 An Introduction Computer Networks An Introduction to Computer Networks University of Tehran Dept. of EE.
Advanced Computer Networks
Transport Control Protocol
5. End-to-end protocols (part 1)
Internet routing Problem: Route from any node to any other node
The University of Adelaide, School of Computer Science
The University of Adelaide, School of Computer Science
TCP Overview Connection-oriented Byte-stream Full duplex
Transport Control Protocol
CSS432 End-to-End Protocols Textbook Ch5.1 – 5.2
Advanced Computer Networks
Reliable Byte-Stream (TCP)
Ilam University Dr. Mozafar Bag-Mohammadi
Transmission Control Protocol (TCP) Part II Neil Tang 11/21/2008
State Transition Diagram
Advanced Computer Networks
The University of Adelaide, School of Computer Science
CSS432 UDP and TCP Textbook Ch5.1 – 5.2
Introduction to Computer Networks
Introduction to Computer Networks
Introduction to Computer Networks
Lecture 21 and 22 5/29/2019.
Transport Protocols: TCP Segments, Flow control and Connection Setup
Presentation transcript:

8. Transport Protocol and UDP 8.1 Transport protocol : End-to-end protocol –IP: Host to host packet delivery –Transport: Process to process communication Port number Multiplexing and de-multiplexing

End-to-End Protocols Underlying best-effort network –drop messages –re-orders messages –delivers duplicate copies of a given message –limits messages to some finite size –delivers messages after an arbitrarily long delay Common end-to-end services –guarantee message delivery –deliver messages in the same order they are sent –deliver at most one copy of each message –support arbitrarily large messages –support synchronization –allow the receiver to flow control the sender –support multiple application processes on each host

8.2 UDP (User Datagram Protocol) Unreliable and unordered datagram service Adds multiplexing No flow control Endpoints identified by ports –Servers may have well-known ports –see /etc/services on Unix Header format Checksum –psuedo header + UDP header + data SrcPortDstPort ChecksumLength Data 01631

9. TCP: Reliable Byte-Stream Outline Overview Segment format Connection Establishment/Termination Flow Control (Sliding Window) Adaptive Timeout Congestion Control

9.1 TCP Overview Reliable, Connection- oriented Byte-stream –app writes bytes –TCP sends segments –app reads bytes Application process Write bytes TCP Send buffer Segment Transmit segments Application process Read bytes TCP Receive buffer … …… Full duplex Flow control: keep sender from overrunning receiver Congestion control: keep sender from overrunning network

Data Link Versus Transport Potentially connects many different hosts –need explicit connection establishment and termination Potentially different RTT –need adaptive timeout mechanism Potentially long delay in network –need to be prepared for arrival of very old packets Potentially different capacity at destination –need to accommodate different node capacity Potentially different network capacity –need to be prepared for network congestion

9.2 Segment Format

Segment Format (cont) Each connection identified with 4-tuple: –(SrcPort, SrcIPAddr, DsrPort, DstIPAddr) Sliding window + flow control –acknowledgment, SequenceNum, AdvertisedWinow Checksum –pseudo header + TCP header + data Sender Data(SequenceNum) Acknowledgment + AdvertisedWindow Receiver

Flags URG: urgent pointer is valid ACK: ack# is valid PUSH: this segment requests a push RST: reset the connection SYN: synchronize sequence number FIN: sender has reached end of its byte stream (no more data to send)

9.3 Connection Establishment and Termination Active participant (client) Passive participant (server) SYN, SequenceNum = x SYN + ACK, SequenceNum = y, ACK, Acknowledgment = y + 1 Acknowledgment = x + 1

State Transition Diagram CLOSED LISTEN SYN_RCVDSYN_SENT ESTABLISHED CLOSE_WAIT LAST_ACKCLOSING TIME_WAIT FIN_WAIT_2 FIN_WAIT_1 Passive openClose Send/SYN SYN/SYN + ACK SYN + ACK/ACK SYN/SYN + ACK ACK Close/FIN FIN/ACKClose/FIN FIN/ACK ACK + FIN/ACK Timeout after two segment lifetimes FIN/ACK ACK Close/FIN Close CLOSED Active open/SYN

Connection Establishment: three-way handshake Active participant (client) Passive participant (server) SYN, SequenceNum = x SYN + ACK, SequenceNum = y, ACK, Acknowledgment = y + 1 Acknowledgment = x + 1 CLOSED SYN-SENT ESTABLISHED CLOSED LISTEN SYN-RCVD ESTABLISHED

Termination This side closed first: –ESTABLISHED  FIN-WAIT-1  FIN-WAIT-2  TIME-WAIT  CLOSED The other side closes first: –ESTABLISHED  CLOSE-WAIT  LAST-ACK  CLOSED Both sides close at the same time: –ESTABLISHED  FIN-WAIT-1  CLOSING  TIME-WAIT  CLOSED

Example of Simultaneous Close FIN, seq#= j FIN, Seq#= k ACK, k+1 ACK, j+1 TIME-WAIT CLOSED FIN-WAIT-1 ESTABLISHED CLOSING TIME-WAIT CLOSED ESTABLISHED FIN-WAIT-1 CLOSING

9.4 Flow Control Sliding window –It guarantees the reliable delivery of data –It ensures that data is delivered in order –It enforces flow control between the sender and the receiver

Variables Sending application LastByteWritten TCP LastByteSentLastByteAcked Receiving application LastByteRead TCP LastByteRcvdNextByteExpected

Flow Control Sending side –LastByteAcked < = LastByteSent –LastByteSent < = LastByteWritten –buffer bytes between LastByteAcked and LastByteWritten Sending application LastByteWritten TCP LastByteSentLastByteAcked Receiving application LastByteRead TCP LastByteRcvdNextByteExpected Receiving side –LastByteRead < NextByteExpected –NextByteExpected < = LastByteRcvd +1 –buffer bytes between LastByteRead and LastByteRcvd

Flow Control (cont.) Send buffer size: MaxSendBuffer Receive buffer size: MaxRcvBuffer Receiving side –LastByteRcvd - LastByteRead < = MaxRcvBuffer –AdvertisedWindow = MaxRcvBuffer - ( NextByteExpected - NextByteRead ) Sending side –LastByteSent - LastByteAcked < = AdvertisedWindow –EffectiveWindow = AdvertisedWindow - ( LastByteSent - LastByteAcked ) –LastByteWritten - LastByteAcked < = MaxSendBuffer –block sender if ( LastByteWritten - LastByteAcked ) + y > MaxSenderBuffer Always send ACK in response to arriving data segment Persist when AdvertisedWindow = 0

Protection Against Wrap Around 32-bit SequenceNum BandwidthTime Until Wrap Around T1 (1.5 Mbps)6.4 hours Ethernet (10 Mbps)57 minutes T3 (45 Mbps)13 minutes FDDI (100 Mbps)6 minutes STS-3 (155 Mbps)4 minutes STS-12 (622 Mbps)55 seconds STS-24 (1.2 Gbps)28 seconds

Keeping the Pipe Full 16-bit AdvertisedWindow BandwidthDelay x Bandwidth Product T1 (1.5 Mbps)18KB Ethernet (10 Mbps)122KB T3 (45 Mbps)549KB FDDI (100 Mbps)1.2MB STS-3 (155 Mbps)1.8MB STS-12 (622 Mbps)7.4MB STS-24 (1.2 Gbps)14.8MB

TCP Extensions Implemented as header options Store timestamp in outgoing segments Extend sequence space with 32-bit timestamp (PAWS) Shift (scale) advertised window

9.5 Adaptive Retransmission (Original Algorithm) Measure SampleRTT for each segment/ ACK pair Compute weighted average of RTT –EstRTT =  x EstRTT +  x SampleRTT –where  +  = 1  between 0.8 and 0.9  between 0.1 and 0.2 Set timeout based on EstRTT –TimeOut = 2 x EstRTT

Karn/Partridge Algorithm Do not sample RTT when retransmitting Double timeout after each retransmission SenderReceiver Original transmission ACK SampleR TT Retransmission SenderReceiver Original transmission ACK SampleR TT Retransmission

Jacobson/ Karels Algorithm New Calculations for average RTT Diff = SampleRTT - EstRTT EstRTT = EstRTT + (  x Diff) Dev = Dev +  ( |Diff| - Dev) –where  is a factor between 0 and 1 Consider variance when setting timeout value TimeOut =  x EstRTT +  x Dev –where  = 1 and  = 4 Notes –algorithm only as good as granularity of clock (500ms on Unix) –accurate timeout mechanism important to congestion control (later)

Design Alternatives Stream-oriented vs request-reply Byte stream vs message stream Explicit setup/teardown vs implicit setup/teardown Window-based vs rate-based