Transport Layer1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

2: Transport Layer 31 Transport Layer 3. 2: Transport Layer 32 TCP Flow Control receiver: explicitly informs sender of (dynamically changing) amount of.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
EEC-484/584 Computer Networks Lecture 8 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 11.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 TCP: Overview r full duplex data: m bi-directional data flow in same connection m MSS: maximum segment size r connection-oriented: m.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
Announcement Homework 2 in tonight –Will be graded and sent back before Th. class Midterm next Tu. in class –Review session next time –Closed book –One.
Chapter 3 outline 3.1 transport-layer services
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
10/7/ /9/2003 TCP and Congestion Control October 7-9, 2003.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer Transport Layer: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Previous Lecture r Reliable transfer protocols m Pipelined protocols Go-back N Selective repeat 1.
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
The Future r Let’s look at the homework r The next test is coming the 19 th (just before turkey day!) r Monday will finish TCP canned slides r Wednesday.
EEC-484/584 Computer Networks Lecture 8 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Announcement Homework 1 graded Homework 2 out –Due in a week, 1/30 Project 2 problems –Minet can only compile w/ old version of gcc (2.96). –Only tlab-login.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection.
Transport Layer3-1 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
TCOM 509 – Internet Protocols (TCP/IP) Lecture 04_b Transport Protocols - TCP Instructor: Dr. Li-Chuan Chen Date: 09/22/2003 Based in part upon slides.
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
1 End-to-End Protocols (UDP, TCP, Connection Management)
Transport Layer3-1 Transport Layer Our lives begin to end, the day we become silent about things that matter.
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
EEC-484/584 Computer Networks Lecture 8 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer session 1 TELE3118: Network Technologies Week 11: Transport Layer TCP Some slides have been taken from: r Computer Networking:
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
09-Transport Layer: TCP Transport Layer.
Chapter 3 outline 3.1 Transport-layer services
CS 1652 Jack Lange University of Pittsburgh
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 Transport Layer
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 Transport Layer
Presentation transcript:

Transport Layer1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion and flow control set window size r full duplex data transfer: m bi-directional data flow in same connection r A TCP is always point-to-point: m one sender, one receiver r connection-oriented: m Because handshaking take place. Handshaking (exchange of control msgs) initialize sender, receiver state before data exchange r send & receive buffers m MSS: maximum segment size

Transport Layer2 TCP segment structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pnter checksum F SR PAU head len not used Options (variable length) URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection setup and teardown # bytes rcvr willing to accept counting by bytes of data (not segments!) Internet checksum (as in UDP) RFC 793, 1323

Transport Layer3 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? r too short: premature timeout m unnecessary retransmissions r too long: slow reaction to segment loss r longer than RTT m but RTT varies Q: how to estimate RTT?  SampleRTT : measured time from segment transmission until ACK receipt m ignore retransmissions  SampleRTT will vary, want estimated RTT “smoother” m average SampleRTT values

Transport Layer4 TCP Round Trip Time and Timeout Setting the timeout  EstimtedRTT plus “safety margin”  large variation in EstimatedRTT -> larger safety margin

Transport Layer5 TCP reliable data transfer r TCP creates reliable data transfer service on top of IP’s unreliable service r Pipelined segments r Cumulative acks r Single retransmission timer r Retransmissions are triggered by: m timeout events m duplicate acks r Initially consider simplified TCP sender: m ignore duplicate acks m ignore flow control, congestion control

Transport Layer6 TCP sender events: data rcvd from app: r create segment with seq # NextSeqNum r start timer if not already running (think of timer as for oldest unacked segment)  expiration interval: TimeOutInterval timeout: r retransmit not-yet-acked segment with smallest seq # r restart timer Ack(y) rcvd: r If acknowledges previously unacked segments (y > SendBase) m Set SendBase = y m start timer if there are outstanding segments

Transport Layer7 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ Comment: SendBase-1: last cumulatively ack’ed byte Example: SendBase = 71; y= 73, so the rcvr wants 73+ ; y > SendBase  new data (71,72) is acked

Transport Layer8 TCP: retransmission scenarios Host A Seq=100, 20 bytes data ACK=100 time premature timeout Host B Seq=92, 8 bytes data ACK=120 Seq=92, 8 bytes data Seq=92 timeout ACK=120 Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X Seq=92, 8 bytes data ACK=100 time Seq=92 timeout SendBase = 100 SendBase = 120 SendBase = 120 Sendbase = 100 discard segment

Transport Layer9 TCP retransmission scenarios (more) Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

Transport Layer10 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Arrival of in-order segment with expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. #. Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for another in-order segment. If no such segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment starts at lower end of gap

Transport Layer11 Fast Retransmit r Time-out period often relatively long: m long delay before resending lost packet r Detect lost segments via duplicate ACKs. m Sender often sends many segments back-to- back m If a segment is lost, there will likely be many duplicate ACKs. r If sender receives 3 duplicate ACKs for the same data, it supposes that segment after ACKed data was lost: m fast retransmit: resend segment before timer expires

Transport Layer12 event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y } Fast retransmit algorithm: a duplicate ACK for already ACKed segment fast retransmit

Transport Layer13 TCP Flow Control r receive side of TCP connection has a receive buffer: r speed-matching service: matching the send rate to the receiving app’s drain rate r app process may be slow at reading from buffer sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control

Transport Layer14 TCP Flow control: how it works (Suppose TCP receiver discards out-of-order segments)  spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead]  Rcvr advertises spare room by including value of RcvWindow in segments  Sender limits unACKed data to RcvWindow: LastByteSent-LastByteAcked <= RcvWindow guarantees receive buffer doesn’t overflow

Transport Layer15 TCP Connection Management Recall: TCP sender, receiver establish “connection” before exchanging data segments r initialize TCP variables: m seq. #s  buffers, flow control info (e.g. RcvWindow ) r client: connection initiator r server: contacted by client Three way handshake: Step 1: client host sends TCP SYN segment to server m specifies initial seq # m no data Step 2: server host receives SYN, replies with SYNACK segment m server allocates buffers, variables m specifies server initial seq. # Step 3: client receives SYNACK, allocate buffers and variables, replies with ACK segment, which may contain data

Transport Layer16 TCP Connection Management: Three way handshake client SYN=1, seq=client_ins server SYN=1, seq=server_ins, Ack=client_ins+1 SYN=0, seq=client_ins+1, Ack=server_ins+1 Connection request Connection granted ACK

Transport Layer17 TCP Connection Management (cont.) Closing a connection: client closes socket: Step 1: client end system sends TCP FIN control segment to server, FIN bit set to 1 Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN. client FIN server ACK FIN closing closed timed wait closed

Transport Layer18 TCP Connection Management (cont.) Step 3: client receives FIN, replies with ACK. m Enters “timed wait” – resend the final ACK in case it is lost m Connection closes after wait Step 4: server receives ACK. Connection closed. client FIN server ACK FIN closing closed timed wait closed

Transport Layer19 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle” r different from flow control! r manifestations: m lost packets (buffer overflow at routers) m long delays (queueing in router buffers)

Transport Layer20 Causes/costs of congestion: scenario 2 r Case 1: send a packet only when a buffer is free: r Case 2: “perfect” retransmission only when loss: r Case 3: retransmission of delayed (not lost) packet makes larger (than case 2) for same in out “costs” of congestion: r more work performed by sender (retransmissions) r unneeded retransmissions (due to large delay) R/2 C/2 R/2 C/3 R/2 C/4

Transport Layer21 TCP Congestion Control r end-end control (no network assistance) r sender limits transmission rate: LastByteSent-LastByteAcked  min{CongWin, RcvWindow) r Roughly,  CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? r loss event = timeout or 3 duplicate acks  TCP sender reduces rate ( CongWin ) after loss event three mechanisms: m AIMD m slow start m reaction to timeout events rate = CongWin RTT Bytes/sec

Transport Layer22 TCP AIMD multiplicative decrease: cut CongWin in half after loss event additive increase:  increase CongWin by 1 MSS every RTT in the absence of loss events: probing r also called congestion avoidance Long-lived TCP connection

Transport Layer23 TCP Slow Start  When connection begins, CongWin = 1 MSS m Example: MSS = 500 bytes & RTT = 200 msec m initial rate = 20 kbps r available bandwidth may be >> MSS/RTT m desirable to quickly ramp up to respectable rate r When connection begins, increase rate exponentially fast until first loss event

Transport Layer24 TCP Slow Start (more) r When connection begins, increase rate exponentially until first loss event:  double CongWin every RTT  done by incrementing CongWin by one MSS for every ACK received r Summary: initial rate is slow but ramps up exponentially fast Host A one segment RTT Host B time two segments four segments

Transport Layer25 Refinement r After 3 dup ACKs:  CongWin is cut in half m window then grows linearly r But after timeout event:  CongWin instead set to 1 MSS; m window then grows exponentially m to a threshold, then grows linearly r Implementation: At loss event, threshold is set to 1/2 of CongWin just before loss event 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” Philosophy:

Transport Layer26 Summary: TCP Congestion Control  When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.  When CongWin is above Threshold, sender is in congestion- avoidance phase, window grows linearly.  When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.  When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS. Triple duplicate ACK

Transport Layer27 Summary r principles behind transport layer services: m multiplexing, demultiplexing m reliable data transfer m flow control m congestion control r instantiation and implementation in the Internet m UDP m TCP