Introduction 1 Lecture 12 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 Homework r Chapter 2#10,13-18 r Due Wed September 17.
Transport Layer3-1 Pipelined protocols Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts m range of sequence numbers must be.
Transport Layer 4 Slides from Kurose and Ross
Chapter 3 outline 3.1 transport-layer services
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 10.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Transport Layer3-1 Data Communication and Networks Lecture 6 Reliable Data Transfer October 12, 2006.
Announcement Project 1 due last night, how is that ? Project 2 almost ready, out tomorrow, will post online –Much harder than project 1, start early!
Announcement Project 1 due last night, how is that ? Homework 1 grade, comments out –Will be discussed in the next lecture Homework 2 out Project 2 almost.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
The Future r Let’s look at the homework r The next test is coming the 19 th (just before turkey day!) r Monday will finish TCP canned slides r Wednesday.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
Announcement Homework 1 graded Homework 2 out –Due in a week, 1/30 Project 2 problems –Minet can only compile w/ old version of gcc (2.96). –Only tlab-login.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture r Transport-layer services r Multiplexing and demultiplexing r Connectionless.
EEC-484/584 Computer Networks Lecture 7 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
CSCI 3335: C OMPUTER N ETWORKS C HAPTER 3 T RANSPORT L AYER Vamsi Paruchuri University of Central Arkansas Some.
Transport Layer 3-1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
15-1 Last time □ Reliable Data Transfer ♦ Provide rdt over unreliable network layer ♦ FSM model ♦ rdt 1.0: rdt over reliable channels ♦ rdt 2.0: rdt over.
rdt2.2: a NAK-free protocol
Transport Layer3-1 rdt2.1: sender, handles garbled ACK/NAKs Wait for call 0 from above sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_send(data)
Transport Layer 3-1 Chapter 3 outline 3.4 Principles of reliable data transfer.
1 John Magee 10 February 2014 CS 280: Transport Layer: Reliable Data Transfer Most slides adapted from Kurose and Ross, Computer Networking 6/e Source.
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer Our goals:
9: Pipelined Protocols and RTT Transport Layer 3-1 Slides adapted from: J.F Kurose and K.W. Ross,
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Important r Midterm will be on m FRIDAY, Feb. 12th 1.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Introduction 1 Lecture 11 Transport Layer (Reliable Data Transfer) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Chapter 3 Transport Layer
Chapter 3 outline 3.1 Transport-layer services
CS 1652 Jack Lange University of Pittsburgh
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
Chapter 3 Transport Layer
Last time Reliable Data Transfer
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 outline 3.1 Transport-layer services
rdt2.2: a NAK-free protocol
Chapter 3 Transport Layer
rdt2.0: FSM specification
Chapter 3 Transport Layer
Lecture 5 – Chapter 3 CIS 5617, Spring2019 Anduo Wang
Presentation transcript:

Introduction 1 Lecture 12 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department Fall 2011 CPE 400 / 600 Computer Communication Networks

Transport Layer 3-2 Performance of rdt3.0 r rdt3.0 works, but performance stinks r ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: m U sender : utilization – fraction of time sender busy sending m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link m network protocol limits use of physical resources!

Transport Layer 3-3 rdt3.0: stop-and-wait operation first packet bit transmitted, t = 0 senderreceiver RTT last packet bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R

Transport Layer 3-4 Pipelined protocols Pipelining: sender allows multiple, “in-flight”, yet-to- be-acknowledged pkts m range of sequence numbers must be increased m buffering at sender and/or receiver r Two generic forms of pipelined protocols: go-Back-N, selective repeat

Transport Layer 3-5 Pipelining: increased utilization first packet bit transmitted, t = 0 senderreceiver RTT last bit transmitted, t = L / R first packet bit arrives last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R last bit of 2 nd packet arrives, send ACK last bit of 3 rd packet arrives, send ACK Increase utilization by a factor of 3!

Transport Layer 3-6 Pipelining Protocols Go-back-N: overview r sender: up to N unACKed pkts in pipeline r receiver: only sends cumulative ACKs m doesn’t ACK pkt if there’s a gap r sender: has timer for oldest unACKed pkt m if timer expires: retransmit all unACKed packets Selective Repeat: overview r sender: up to N unACKed packets in pipeline r receiver: ACKs individual pkts r sender: maintains timer for each unACKed pkt m if timer expires: retransmit only unACKed packet

Transport Layer 3-7 Go-Back-N Sender: r k-bit seq # in pkt header r “window” of up to N, consecutive unACKed pkts allowed r ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK” m may receive duplicate ACKs (see receiver) r timer for each in-flight pkt r timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-8 GBN: sender extended FSM Wait start_timer udt_send(sndpkt[base]) udt_send(sndpkt[base+1]) … udt_send(sndpkt[nextseqnum-1]) timeout rdt_send(data) if (nextseqnum < base+N) { sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum) udt_send(sndpkt[nextseqnum]) if (base == nextseqnum) start_timer nextseqnum++ } else refuse_data(data) base = getacknum(rcvpkt)+1 If (base == nextseqnum) stop_timer else start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) base=1 nextseqnum=1 rdt_rcv(rcvpkt) && corrupt(rcvpkt) 

Transport Layer 3-9 GBN: receiver extended FSM ACK-only: always send ACK for correctly-received pkt with highest in-order seq # m may generate duplicate ACKs  need only remember expectedseqnum r out-of-order pkt: m discard (don’t buffer) -> no receiver buffering! m Re-ACK pkt with highest in-order seq # Wait udt_send(sndpkt) default rdt_rcv(rcvpkt) && notcurrupt(rcvpkt) && hasseqnum(rcvpkt,expectedseqnum) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(expectedseqnum,ACK,chksum) udt_send(sndpkt) expectedseqnum++ expectedseqnum=1 sndpkt = make_pkt(expectedseqnum,ACK,chksum) 

Transport Layer 3-10 GBN in action

Transport Layer 3-11 Selective Repeat r receiver individually acknowledges all correctly received pkts m buffers pkts, as needed, for eventual in-order delivery to upper layer r sender only resends pkts for which ACK not received m sender timer for each unACKed pkt r sender window m N consecutive seq #’s m again limits seq #s of sent, unACKed pkts

Transport Layer 3-12 Selective repeat: sender, receiver windows

Transport Layer 3-13 Selective repeat data from above : r if next available seq # in window, send pkt timeout(n): r resend pkt n, restart timer ACK(n) in [sendbase,sendbase+N]: r mark pkt n as received r if n smallest unACKed pkt, advance window base to next unACKed seq # sender pkt n in [rcvbase, rcvbase+N-1] r send ACK(n) r out-of-order: buffer r in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt pkt n in [rcvbase-N,rcvbase-1] r ACK(n) otherwise: r ignore receiver

Transport Layer 3-14 Selective repeat in action

Transport Layer 3-15 Selective repeat: dilemma Example: r seq #’s: 0, 1, 2, 3 r window size=3 r receiver sees no difference in two scenarios! r incorrectly passes duplicate data as new in (a) Q: what relationship between seq # size and window size?

Transport Layer 3-16 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles of reliable data transfer r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management r 3.6 Principles of congestion control r 3.7 TCP congestion control

Transport Layer 3-17 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum segment size r connection-oriented: m handshaking (exchange of control msgs) init’s sender, receiver state before data exchange r flow controlled: m sender will not overwhelm receiver r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion and flow control set window size r send & receive buffers

Transport Layer 3-18 TCP segment structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number Receive window Urg data pointer checksum F SR PAU head len not used Options (variable length) URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) # bytes rcvr willing to accept counting by bytes of data (not segments!) Internet checksum (as in UDP)

Transport Layer 3-19 TCP seq. #’s and ACKs Seq. #’s: m byte stream “number” of first byte in segment’s data ACKs: m seq # of next byte expected from other side m cumulative ACK Q: how receiver handles out-of-order segments m A: TCP spec doesn’t say, - up to implementer Host A Host B Seq=42, ACK=79, data = ‘C’ Seq=79, ACK=43, data = ‘C’ Seq=43, ACK=80 User types ‘C’ host ACKs receipt of echoed ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ time simple telnet scenario

Transport Layer 3-20 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? r longer than RTT m but RTT varies r too short: premature timeout m unnecessary retransmissions r too long: slow reaction to segment loss Q: how to estimate RTT?  SampleRTT : measured time from segment transmission until ACK receipt m ignore retransmissions  SampleRTT will vary, want estimated RTT “smoother”  average several recent measurements, not just current SampleRTT

Transport Layer 3-21 TCP Round Trip Time and Timeout EstimatedRTT = (1-  )*EstimatedRTT +  *SampleRTT r Exponential weighted moving average r influence of past sample decreases exponentially fast  typical value:  = 0.125

Transport Layer 3-22 Example RTT estimation:

Transport Layer 3-23 TCP Round Trip Time and Timeout Setting the timeout  EstimtedRTT plus “safety margin”  large variation in EstimatedRTT -> larger safety margin r first estimate of how much SampleRTT deviates from EstimatedRTT: TimeoutInterval = EstimatedRTT + 4*DevRTT DevRTT = (1-  )*DevRTT +  *|SampleRTT-EstimatedRTT| (typically,  = 0.25) Then set timeout interval:

Transport Layer 3-24 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles of reliable data transfer r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management r 3.6 Principles of congestion control r 3.7 TCP congestion control

Transport Layer 3-25 TCP reliable data transfer r TCP creates rdt service on top of IP’s unreliable service r pipelined segments r cumulative ACKs r TCP uses single retransmission timer r retransmissions are triggered by: m timeout events m duplicate ACKs r initially consider simplified TCP sender: m ignore duplicate ACKs m ignore flow control, congestion control

Transport Layer 3-26 TCP sender events: data rcvd from app: r create segment with seq # r seq # is byte-stream number of first data byte in segment r start timer if not already running m think of timer as for oldest unACKed segment  expiration interval: TimeOutInterval timeout: r retransmit segment that caused timeout r restart timer ACK rcvd: r if acknowledges previously unACKed segments m update what is known to be ACKed m start timer if there are outstanding segments

Transport Layer 3-27 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ Comment: SendBase-1: last cumulatively ACKed byte Example: SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is ACKed

Transport Layer 3-28 TCP: retransmission scenarios Host A Seq=100, 20 bytes data ACK=100 time premature timeout Host B Seq=92, 8 bytes data ACK=120 Seq=92, 8 bytes data Seq=92 timeout ACK=120 Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X Seq=92, 8 bytes data ACK=100 time Seq=92 timeout SendBase = 100 SendBase = 120 SendBase = 120 Sendbase = 100

Transport Layer 3-29 TCP retransmission scenarios (more) Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

Transport Layer 3-30 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Arrival of in-order segment with expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. #. Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment starts at lower end of gap

Transport Layer 3-31 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate ACKs. m sender often sends many segments back-to- back m if segment is lost, there will likely be many duplicate ACKs for that segment r If sender receives 3 ACKs for same data, it assumes that segment after ACKed data was lost: m fast retransmit: resend segment before timer expires

Transport Layer 3-32 Host A timeout Host B time X resend seq X2 seq # x1 seq # x2 seq # x3 seq # x4 seq # x5 ACK x1 triple duplicate ACKs

Transport Layer 3-33 event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y } Fast retransmit algorithm: a duplicate ACK for already ACKed segment fast retransmit