Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition Shant Karakashian Dissertation Defense Collaborations: Bessiere, Geschwender,

Slides:



Advertisements
Similar presentations
Non-Binary Constraint Satisfaction Toby Walsh Cork Constraint Computation Center.
Advertisements

Tree Clustering for Constraint Networks 1 Chris Reeson Advanced Constraint Processing Fall 2009 By Rina Dechter & Judea Pearl Artificial Intelligence,
Constraint Satisfaction Problems
ICS-271:Notes 5: 1 Lecture 5: Constraint Satisfaction Problems ICS 271 Fall 2008.
IJCAI Russian Doll Search with Tree Decomposition Martí Sànchez, David Allouche, Simon de Givry, and Thomas Schiex INRA Toulouse, FRANCE.
Statistical Methods in AI/ML Bucket elimination Vibhav Gogate.
Constraint Optimization Presentation by Nathan Stender Chapter 13 of Constraint Processing by Rina Dechter 3/25/20131Constraint Optimization.
Exact Inference in Bayes Nets
Foundations of Constraint Processing More on Constraint Consistency 1 Foundations of Constraint Processing CSCE421/821, Spring
Nov Properties of Tree Convex Constraints Authors: Yuanlin Zhang & Eugene C. Freuder Presentation by Robert J. Woodward CSCE990 ACP, Fall 2009.
Foundations of Constraint Processing, Spring 2008 April 16, 2008 Tree-Structured CSPs1 Foundations of Constraint Processing CSCE421/821, Spring 2008:
A First Practical Algorithm for High Levels of Relational Consistency Shant Karakashian, Robert Woodward, Christopher Reeson, Berthe Y. Choueiry & Christian.
1 Directional consistency Chapter 4 ICS-179 Spring 2010 ICS Graphical models.
Introduction Combining two frameworks
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a set of variables {A,B,C,…}, a set of domain values for these variables,
Anagh Lal Monday, April 14, Chapter 9 – Tree Decomposition Methods Anagh Lal CSCE Advanced Constraint Processing.
An Approximation of Generalized Arc-Consistency for Temporal CSPs Lin Xu and Berthe Y. Choueiry Constraint Systems Laboratory Department of Computer Science.
Improving Backtrack Search For Solving the TCSP Lin Xu and Berthe Y. Choueiry Constraint Systems Laboratory Department of Computer Science and Engineering.
CPSC 322, Lecture 12Slide 1 CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12 (Textbook Chpt ) January, 29, 2010.
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a set of variables, a set of domain values for these variables,
 i may require adding new constraints, except for… o i =1  domain filtering o i =   constraint filtering Robert Woodward & Berthe Y. Choueiry Constraint.
Constraint Satisfaction Problems
A Constraint Satisfaction Problem (CSP) is a combinatorial decision problem defined by a set of variables, a set of domain values for these variables,
1.A finer version of PPC. 2.Cheaper than PPC and F-W. 3.Guarantees the minimal network. 4.Automatically decomposes the graph into its bi-connected components:
M. HardojoFriday, February 14, 2003 Directional Consistency Dechter, Chapter 4 1.Section 4.4: Width vs. Local Consistency Width-1 problems: DAC Width-2.
Constraint Systems Laboratory March 26, 2007Reeson–Undergraduate Thesis1 Using Constraint Processing to Model, Solve, and Support Interactive Solving of.
Ch 13 – Backtracking + Branch-and-Bound
Stochastic greedy local search Chapter 7 ICS-275 Spring 2007.
Constraint Systems Laboratory December 9, 2005ISI AI Seminar Series1 Symmetry Detection in Constraint Satisfaction Problems & its Application in Databases.
Constraint Systems Laboratory April 21, 2005Lal: M.S. thesis defense1 Neighborhood Interchangeability (NI) for Non-Binary CSPs & Application to Databases.
Ryan Kinworthy 2/26/20031 Chapter 7- Local Search part 2 Ryan Kinworthy CSCE Advanced Constraint Processing.
Tractable Symmetry Breaking Using Restricted Search Trees Colva M. Roney-Dougal, Ian P. Gent, Tom Kelsey, Steve Linton Presented by: Shant Karakashian.
Constraint Satisfaction Problem:  Used to model constrained combinatorial problems  Important real-world applications: hardware & software verification,
Because the localized R(*,m)C does not consider combinations of relations across clusters, propagation between clusters is hindered. Synthesizing a global.
Constraint Systems Laboratory 10/24/2015Bayer–MS Thesis Defense1 Reformulating Constraint Satisfaction Problems with Application to Geospatial Reasoning.
CP Summer School Modelling for Constraint Programming Barbara Smith 2. Implied Constraints, Optimization, Dominance Rules.
1 Directional consistency Chapter 4 ICS-275 Spring 2009 ICS Constraint Networks.
Wednesday, January 29, 2003CSCE Spring 2003 B.Y. Choueiry Directional Consistency Chapter 4.
Constraint Systems Laboratory R.J. Woodward 1, S. Karakashian 1, B.Y. Choueiry 1 & C. Bessiere 2 1 Constraint Systems Laboratory, University of Nebraska-Lincoln.
Stochastic greedy local search Chapter 7 ICS-275 Spring 2009.
Arc Consistency CPSC 322 – CSP 3 Textbook § 4.5 February 2, 2011.
Foundations of Constraint Processing, Fall 2004 October 3, 2004Interchangeability in CSPs1 Foundations of Constraint Processing CSCE421/821, Fall 2004:
Foundations of Constraint Processing, Spring 2009 Structure-Based Methods: An Introduction 1 Foundations of Constraint Processing CSCE421/821, Spring 2009.
Eliminating non- binary constraints Toby Walsh Cork Constraint Computation Center.
Constraint Systems Laboratory Robert J. Woodward Joint work with Shant Karakashian, Daniel Geschwender, Christopher Reeson, and Berthe Y. UNL.
Constraint Systems Laboratory Robert J. Woodward Constraint Systems Laboratory Department of Computer Science & Engineering University of Nebraska-Lincoln.
853 instances from the 2008 CP Solver Competition. Real full lookahead cl+proj-wR(*,m)C, which enforces R(*, m)C on each cluster, adds projection of constraints.
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
Structure-Based Methods Foundations of Constraint Processing
Consistency Methods for Temporal Reasoning
A First Practical Algorithm for High Levels of Relational Consistency
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
Empirical Comparison of Preprocessing and Lookahead Techniques for Binary Constraint Satisfaction Problems Zheying Jane Yang & Berthe Y. Choueiry Constraint.
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
Structure-Based Methods Foundations of Constraint Processing
More on Constraint Consistency
Structure-Based Methods Foundations of Constraint Processing
Structure-Based Methods Foundations of Constraint Processing
More on Constraint Consistency
Chapter 5: General search strategies: Look-ahead
Constraint Satisfaction Problems & Its Application in Databases
Revisiting Neighborhood Inverse Consistency on Binary CSPs
A Qualitative Analysis of Search Behavior: A Visual Approach
Improving the Performance of Consistency Algorithms by Localizing and Bolstering Propagation in a Tree Decomposition Shant Karakashian, Robert J. Woodward.
PrePeak+ = PrePeak + ‘How Much’
Structure-Based Methods Foundations of Constraint Processing
Revisiting Neighborhood Inverse Consistency on Binary CSPs
An Introduction Structure-Based Methods
Reformulating the Dual Graphs of CSPs
Structure-Based Methods Foundations of Constraint Processing
Presentation transcript:

Practical Tractability of CSPs by Higher Level Consistency and Tree Decomposition Shant Karakashian Dissertation Defense Collaborations: Bessiere, Geschwender, Hartke, Reeson, Scott, Woodward. Support: NSF CAREER Award # & NSF Grant No. RI Experiments were conducted on the equipment of the Holland Computing Center at UNL.

Context Constraint Satisfaction – General paradigm for modeling & solving combinatorial decision problems – Applications in Engineering, Management, Computer Science Constraint Satisfaction Problems (CSPs) – NP-complete in general Islands of tractability – Classes of CSPs solvable in polynomial time 2 Karakashian: Ph.D. Defense4/11/2013

Our Focus One tractability condition links [Freuder 82] – Consistency level to – Width of the constraint network, a structural parameter (treewidth) Catch 22 – Computing width is in NP-hard – Enforcing higher-levels of consistency may require adding constraints, which increases the treewidth Goal – Exploit above condition to achieve practical tractability 3 Karakashian: Ph.D. Defense4/11/2013

Our Approach Exploit a tree decomposition – Localize application of the consistency algorithm – Steer constraint propagation along the branches of the tree – Add redundant constraints at separators to enhance propagation Karakashian: Ph.D. Defense 4 4/11/2013 Propose consistency properties that – Enforce a (parameterized) consistency level – While preserving the width of a problem instance

Outline Background Contributions – R( ∗,m)C: Consistency property & algorithms [SAC 10, AAAI 10] – Localized consistency & structure-guided propagation – Bolstering propagation at separators [CP 12, AAAI 13] – Counting solutions – (Appendices include other incidental contributions) Conclusions & Future Research Karakashian: Ph.D. Defense 5 4/11/2013 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Constraint Satisfaction Problem (CSP) Given – A set of variables, here X ={A,B,C,D,E,F,G} – Their domains, here D ={D A,D B,D C,D D,D E,D F,D G }, D i ={0,1} – A set of constraints, here C ={C 1,C 2,C 3,C 4,C 5 } where C i = R i,scope(R i ) Question: Find one solution (NPC), find all solutions (#P) R1R1 AEF R3R3 ABC R4R4 ADG R2R2 BE R5R5 BD Karakashian: Ph.D. Defense4/11/2013 R4R4 R5R5 R2R2 R1R1 R3R3 GFAEBCD A0A0 B0B0 C1C1 D1D1 E1E1 F0F0 G0G0 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Graphical Representations of a CSP HypergraphPrimal graphDual graph A B C D EF G A,B,C A,E,FE,B B,D A,D,G A A A B D B B E 7 Karakashian: Ph.D. Defense ABC D E F G R4R4 R5R5 R2R2 R1R1 R3R3 4/11/2013 R4R4 R5R5 R2R2 R1R1 R3R3 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Redundant Edges in a Dual Graph R 1 R 4 forces the value of A in R 1 and R 4 The value of A is enforced through R 1 R 3 and R 3 R 4 R 1 R 4 is redundant 4/11/2013Karakashian: Ph.D. Defense 8 A,B,C A,E,FE,B B,D A,D,G A A A B D B B E R4R4 R5R5 R2R2 R1R1 R3R3 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Solving CSPs A CSP can be solved by – Search (conditioning) Backtrack search Iterative repair (local search) – Synthesizing & propagating constraints (inference) Backtrack search – Constructive, exhaustive exploration of search space – Variable ordering improves the performance – Constraint propagation prunes the search tree 9 Karakashian: Ph.D. Defense4/11/2013 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Consistency Property: Definition Example: k-consistency requires that – For all combinations of k-1 variables … all combinations of consistent values … can always be extended to every k th variable A consistency property – Guarantees that the values of all combinations of variables of a given size verify some set of constraints – Is a necessary but not sufficient condition for partial solution to appear in a complete solution 10 Karakashian: Ph.D. Defense any consistent assignment of length k-1 k th variable 4/11/2013 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Algorithms for Enforcing a Consistency Property May require adding new implicit or redundant constraints – For k-consistency: add constraints to eliminate inconsistent (k-1)-tuples – Which may increase the width of the problem We propose a consistency property that – Never increases the width of the problem – Allows us to increase & control the level of consistency – Operates by deleting tuples from relations 11 Karakashian: Ph.D. Defense any consistent assignment of length k-1 k th variable 4/11/2013 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Tree Decomposition A tree decomposition: 〈 T,, 〉 – T : a tree of clusters – : maps variables to clusters – : maps constraints to clusters {A,B,C,E}, {R 2,R 3 } {A,B,D},{R 3,R 5 } {A,E,F},{R 1 } {A,D,G},{R 4 } C1C1 C2C2 C3C3 C4C4 12 Karakashian: Ph.D. Defense HypergraphTree decomposition Conditions – Each constraint appears in at least one cluster with all the variables in the constraint’s scope – For every variable, the clusters where the variable appears induce a connected subtree 4/11/2013 ABC D E F G R4R4 R5R5 R2R2 R1R1 R3R3 (C1) BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

A separator of two adjacent clusters is the set of variables associated to both clusters Width of a decomposition/network – Treewidth = maximum number of variables in clusters Tree Decomposition: Separators 13 Karakashian: Ph.D. Defense A B C D E F G C1C1 C2C2 C3C3 C4C4 4/11/2013 {A,B,C,E},{R 2,R 3 } {A,B,D},{R 3,R 5 } {A,E,F},{R 1 } {A,D,G},{R 4 } C1C1 C2C2 C3C3 C4C4 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Outline Background Contributions – R( ∗,m)C: Consistency property & algorithms [SAC 10, AAAI 10] – Localized consistency & structure-guided propagation – Bolstering propagation at separators [CP 12, AAAI 13] – Counting solutions – (Appendices include other incidental contributions) Conclusions & Future Research Karakashian: Ph.D. Defense 14 4/11/2013 BackgroundR(*,m)CLocallizationBolsteringSol CountingConclusions

Relational Consistency R( ∗,m)C 4/11/2013Karakashian: Ph.D. Defense 15 [SAC 2010, AAAI 2010] A parametrized relational consistency property Definition – For every set of m constraints – every tuple in a relation can be extended to an assignment – of variables in the scopes of the other m-1 relations R(*,m)C ≡ every m relations form a minimal CSP R(*,m)CLocallizationBolsteringSol CountingConclusions Background

Index-Tree Data Structure Given: two relations, R 1 & R 2 – Scope(R 1 )={X,A,B,C} Scope(R 2 )={A,B,C,D} For a given tuple in R 1, find matching tuples in R 2 4/11/2013Karakashian: Ph.D. Defense 16 R2R2 ABCDdeleted t1t t2t t3t t4t t1t1 t2t2 t3t3 t4t4 A B C Root R(*,m)CLocallizationBolsteringSol CountingConclusions Background

R 1 R 2 R 3 R 1 R 2 R 4 R 1 R 2 R 5 R 1 R 3 R 4 R 2 R 3 R 4 R 2 R 4 R 5 R 3 R 4 R 5 Weaken R( ∗,m)C by removing redundant edges [Jégou 89] Weakening R( ∗,m)C 17 Karakashian: Ph.D. Defense R 1 R 2 R 3 R 1 R 2 R 5 R 1 R 3 R 4 R 2 R 4 R 5 R 3 R 4 R 5 CF CG AD AE ABD ACEG BCF ADE CFG R1R1 R3R3 R2R2 R4R4 R5R5 A B C CF CG AD AE ABD ACEG BCF ADE CFG R1R1 R3R3 R2R2 R4R4 R5R5 B 4/11/2013 R( ∗,3)CwR( ∗,3)C R(*,m)CLocallizationBolsteringSol CountingConclusions Background

Characterizing R( ∗,m)C 4/11/2013Karakashian: Ph.D. Defense 18 GACmaxRPWC R3C R( ∗,2)C wR( ∗,2)C R2C R( ∗,3)CR( ∗,4)C R4C wR( ∗,3)CwR( ∗,4)C R( ∗,m)C RmCRmC wR( ∗,m)C GAC [Waltz 75] maxRPWC [Bessiere+ 08] RmC: Relational m Consistency [Dechter+ 97] [Jégou 89] R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Empirical Evaluations (1) 4/11/2013Karakashian: Ph.D. Defense 19 AlgorithmAvg. #NodesAvg. Time sec#Completed#Fastest#BF SAT aim-100 (instances: 16, vars: 100, dom: 2, rels: 307, arity: 3) GAC9,459, wR( ∗,2)C 234, wR( ∗,3)C 3, wR( ∗,4)C SAT modifiedRenault (instances: 19, vars: 110, dom: 42, rels: 128, arity: 10) GAC1,171, wR( ∗,2)C wR( ∗,3)C wR( ∗,4)C R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Empirical Evaluations (2) 4/11/2013Karakashian: Ph.D. Defense 20 AlgorithmAvg. #NodesAvg. Time sec#Completed#Fastest#BF UNSAT aim-100 (instances: 8, vars: 100, dom: 2, rels: 173, arity: 3) GAC--000 wR( ∗,2)C 4,619,373.02, wR( ∗,3)C 18, wR( ∗,4)C 18, UNSAT modifiedRenault (instances: 31, vars: 111, dom: 42, rels: 130, arity: 10) GAC1,171, wR( ∗,2)C wR( ∗,3)C wR( ∗,4)C R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Algorithms for Enforcing R( ∗,m)C P ER T UPLE – For each tuple find a solution for the variables in the m-1 relations – Many satisfiability searches Effective when there are many solutions Each search is quick & easy A LL S OL – Find all solutions of problem induced by m relations, & keep their tuples – A single exhaustive search Effective when there are few or no solutions Hybrid Solvers (portfolio based) [+Scott] 4/11/2013Karakashian: Ph.D. Defense 21 t1t1 titi t2t2 t3t3 R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Hybrid Solver Choose between P ER T UPLE & A LL S OL Parameters to characterize the problem – κ predicts if instance is at the phase transition – relLinkage approximates the likelihood of a tuple at the overlap two relations to appear in a solution Classifier built using Machine Learning – C4.5 – Random Forests 4/11/2013Karakashian: Ph.D. Defense 22 [+Scott] [Gent+ 96] R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Decision Tree 4/11/2013Karakashian: Ph.D. Defense 23 #1≤ 0.22 No #3≤-2.79 No #7≤0.03 No #10≤10.05 Yes No #2≤ Yes No P ER T UPLE A LL S OL Yes P ER T UPLE Yes A LL S OL #7≤0.23 Yes No A LL S OL P ER T UPLE #1 κ #2 log 2 (avg( relLinkage )) #3 log 2 (stDev( relLinkage )) #7 stDev( tupPerVvpNorm ) #10 avg( relPerVar ) R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Empirical Evaluations (3) 4/11/2013Karakashian: Ph.D. Defense 24 #Instances solved by…Average CPU sec Partition A LL S OL P ER T UPLE S OLVER C4.5 S OLVER RF #Instances A LL S OL P ER T UPLE S OLVER C4.5 S OLVER RF A 5,7775,7765,777 5, P 10,09515,45715,43914,01210, A ∪ P 15,87221,33321,21619,78915, Task: compute the minimal CSP R(*,m)CLocallizationBolsteringSol CountingConclusionsBackground

Outline Background Contributions – R( ∗,m)C: Consistency property & algorithms [SAC 10, AAAI 10] – Localized consistency & structure-guided propagation – Bolstering propagation at separators [CP 12, AAAI 13] – Counting solutions – (Appendices include other incidental contributions) Conclusions & Future Research Karakashian: Ph.D. Defense 25 4/11/2013 LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Localized Consistency Consistency property cl-R( ∗,m)C – Restrict R( ∗,m)C to the clusters Constraint propagation – Guide along a tree structure 4/11/2013Karakashian: Ph.D. Defense 26 LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

C1C1 C2C2 C7C7 C3C3 C4C4 C5C5 C6C6 C8C8 C9C9 C 10 Triangulate the primal graph using min-fill Identify the maximal cliques using M AX C LIQUES Connect the clusters using J OIN T REE Add constraints to clusters where their scopes appear Generating a Tree Decomposition 4/11/2013Karakashian: Ph.D. Defense 27 ABC E D FGH IJK ML N R7R7 R2R2 R3R3 R4R4 R5R5 R6R6 R1R1 A B C E D F G H I J K M L N C8C8 C2C2 A,B,C,N A,I,N B,C,D,H I,M,N B,D,F,H C1C1 C3C3 C7C7 A,I,K C4C4 I,J,K C5C5 A,K,L C6C6 B,D,E,F C9C9 F,G,H C 10 Elimination order M AX C LIQUES {A,B,C,N},{R 1 } C2C2 C7C7 C3C3 C8C8 C1C1 C4C4 C5C5 C6C6 C9C9 C 10 J OIN T REE min-fill LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Information Transfer Between Clusters Two clusters communicate via their separator – Constraints common to the two clusters – Domains of variables common to the two clusters 4/11/2013Karakashian: Ph.D. Defense 28 E R6R6 R5R5 R7R7 R4R4 R2R2 R1R1 R3R3 BADC F LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C R4R4 AD BADC

Characterizing cl-R( ∗,m)C 4/11/2013Karakashian: Ph.D. Defense 29 GAC maxRPWC R3C R( ∗,2)C ≡ wR( ∗,2)C R2C R( ∗,3)CR( ∗,4)C R4C wR( ∗,3)CwR( ∗,4)C R( ∗,m)C RmCRmC wR( ∗,m)C cl-R( ∗,3)Ccl-R( ∗,2)Ccl-R( ∗,4)Ccl-R( ∗,m)C cl-w( ∗,3)Ccl-w( ∗,2)Ccl-w( ∗,4)Ccl-w( ∗,m)C GAC [Waltz 75] maxRPWC [Bessiere+ 08] RmC: Relational m Consistency [Dechter+ 97] LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Empirical Evaluations: Localization 4/11/2013Karakashian: Ph.D. Defense 30 LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Structure-Guided Propagation Orderings – R ANDOM : FIFO/arbitrary – S TATIC, P RIORITY, D YNAMIC : Leavesroot Structure-based propagation – S TATIC Order of M AX C LIQUES – P RIORITY : Process a cluster once in each direction Select most significantly filtered cluster – D YNAMIC Similar to P RIORITY But may process ‘active’ clusters more than once 4/11/2013Karakashian: Ph.D. Defense 31 {A,B,C,N},{R 1 } C2C2 C7C7 C3C3 C8C8 C1C1 C4C4 C5C5 C6C6 C9C9 C 10 C8C8 C2C2 A,B,C,N A,I,N B,C,D,H I,M,N B,D,F,H C1C1 C3C3 C7C7 A,I,K C4C4 I,J,K C5C5 A,K,L C6C6 B,D,E,F C9C9 F,G,H C 10 Leaves Root M AX C LIQUES LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Empirical Evaluations: Propagation 4/11/2013Karakashian: Ph.D. Defense 32 + maxRPWC, m=2,4 cl-wR( ∗,3)C cl-R( ∗,| ψ (cl)|)C # Instances R ANDOM STATIC PRIORITY DYNAMIC RA NDOM STATIC PRIORITY DYNAMIC Completed UNSAT %48.4%48.6%48.9%54.5%59.5%58.9% SAT % 82.5%81.5%77.0%76.0%75.5% Fastest UNSAT %32.8%24.4%23.8%31.5%45.9%33.6%32.4% SAT %44.0%55.5%54.0%25.0%44.0%37.0%42.0% Avg. Time (sec) UNSATNbr instances 232Nbr instances SATNbr instances 162Nbr instances LocallizationBolsteringSol CountingConclusionsBackgroundR(*,m)C

Outline Background Contributions – R( ∗,m)C: Consistency property & algorithms [SAC 10, AAAI 10] – Localized consistency & structure-guided propagation – Bolstering propagation at separators [CP 12, AAAI 13] – Counting solutions – (Appendices include other incidental contributions) Conclusions & Future Research Karakashian: Ph.D. Defense 33 4/11/2013 BolsteringSol CountingConclusionsBackgroundR(*,m)CLocallization

Bolstering Propagation at Separators Localization – Improves performance – Reduces the enforced consistency level Ideally: add unique constraint – Space overhead, major bottleneck Enhance propagation by bolstering – Projection of existing constraints – Adding binary constraints – Adding clique constraints 4/11/2013Karakashian: Ph.D. Defense 34 [CP 2012, AAAI 2013] E F R6R6 R5R5 R7R7 R2R2 R1R1 R3R3 BADC R sep BolsteringSol CountingConclusionsBackgroundR(*,m)CLocallization

Bolstering Schemas: Approximate Unique Separator Constraint 4/11/ Karakashian: Ph.D. Defense E R6R6 R5R5 R7R7 R4R4 R2R2 R1R1 R3R3 BADC F R3’R3’ E F R’ 3 BADC RaRa E BADC F RyRy RxRx B A D CB A D C By projectionBinary constraintsClique constraints BolsteringSol CountingConclusionsBackgroundR(*,m)CLocallization B A D C RyRy RxRx RaRa E R3R3 DC E R6R6 R2R2 BA F E R5R5 R1R1 BC F

Resulting Consistency Properties GAC maxRPWC cl+clq-R( ∗,3)Ccl+clq-R( ∗,4)Ccl+clq-R( ∗,2)C R( ∗,4)C cl-R( ∗,| ψ(cl i ) |)C cl+proj-R( ∗,| ψ(cl i ) |)C cl+proj-R( ∗,3)C R( ∗,3)C cl-R( ∗,2)C cl+bin-R( ∗,4)Ccl+bin-R( ∗,3)C cl+bin-R( ∗,| ψ(cl i ) |)C cl+clq-R( ∗,| ψ(cl i ) |)C cl+bin-R( ∗,2)C cl+proj-R( ∗,2)C R( ∗,2)C cl-R( ∗,3)Ccl-R( ∗,4)C cl+proj-R( ∗,4)C 4/11/ Karakashian: Ph.D. Defense BolsteringSol CountingConclusionsBackgroundR(*,m)CLocallization

Empirical Evaluations 4/11/2013Karakashian: Ph.D. Defense 37 + maxRPWC, m=3,4 wR( ∗,2)CR( ∗,|(cl i )|)C #inst. GAC global local Proj. binary clique local Proj. binary clique Completed UNSAT % % % % % % % % % % SAT % % % % % % % % % % BT-Free UNSAT % % % % % % % % % % SAT % % % % % % % % % % Min(#NV) UNSAT % % % % % % % % % % SAT % % % % % % % % % % Fastest UNSAT % % % 5 1.0% 1 0.2% 1 0.2% % % % % SAT % % % % % % % % % % BolsteringSol CountingConclusionsBackgroundR(*,m)CLocallization

Outline Background Contributions – R( ∗,m)C: Consistency property & algorithms [SAC 10, AAAI 10] – Localized consistency & structure-guided propagation – Bolstering propagation at separators [CP 12, AAAI 13] – Counting solutions – (Appendices include other incidental contributions) Conclusions & Future Research Karakashian: Ph.D. Defense 38 4/11/2013 Sol CountingConclusionsBackgroundR(*,m)CLocallizationBolstering

Solution Counting BTD is used to count the number of solutions [Favier+ 09] Using C OUNT algorithm on trees [Dechter+ 87] Witness-based solution counting Find a witness solution before counting Karakashian: Ph.D. Defense 39 4/11/2013 CpCp apap wastedno solution Sol CountingConclusionsBackgroundR(*,m)CLocallizationBolstering

Empirical Evaluations Task: Count solutions – BTD versus W ITNESS BTD – GAC: Pre-processing & full look-ahead 4/11/2013Karakashian: Ph.D. Defense 40 Sol CountingConclusions BTDW ITNESS BTD Avg. #NV UNSAT (89)1,437, , SAT (101)4,785, ,735, Avg. Time (sec) UNSAT (89) SAT (101)1, , BackgroundR(*,m)CLocallizationBolstering

Empirical Evaluations 4/11/2013Karakashian: Ph.D. Defense 41 + maxRPWC, m=2,4 wR( ∗,3)CR( ∗,|(cl i )|)C #inst. GAC global local Proj. binary clique local Proj. binary clique Completed UNSAT % % % % % % % % % % SAT % % % % % % % % % % BT-Free UNSAT % % % % % % % % % % SAT % % % % % % % % % % Min(#NV) UNSAT % % % % % % % % % % SAT % % % % % % % % % % Fastest UNSAT % % % % % % % % % % SAT % % % % 9 4.5% 9 4.5% % % 9 4.5% 9 4.5% Sol CountingConclusionsBackgroundR(*,m)CLocallizationBolstering

Conclusions Question – Practical tractability of CSPs exploiting the condition linking the level of consistency to the width of the constraint graph Solution – Introduced a parameterized consistency property R( ∗,m)C – Designed algorithms for implementing it P ER T UPLE and A LL S OL Hybrid algorithms – Adapted R( ∗,m)C to a tree decomposition of the CSP Localizing R( ∗,m)C to the clusters Strategies for guiding propagation along the structure Bolstering separators to strengthen the enforced consistency – Improved the BTD algorithm for solution counting, W ITNESS BTD +Two incidental results in appendices 4/11/2013Karakashian: Ph.D. Defense 42 ConclusionsBackgroundR(*,m)CLocallizationBolsteringSol Counting

Future Research Extension to non-table constraints Automating the selection of – a consistency property – consistency algorithms [Geschwender+ 13] Characterizing performance on randomly generated problems + much more in dissertation 4/11/2013Karakashian: Ph.D. Defense 43 ConclusionsBackgroundR(*,m)CLocallizationBolsteringSol Counting

4/11/2013Karakashian: Ph.D. Defense 44 Thank You Collaborations: Bessiere, Geschwender, Hartke, Reeson, Scott, Woodward. Support: NSF CAREER Award # & NSF Grant No. RI Experiments were conducted on the equipment of the Holland Computing Center at UNL.

Computing All k-Connected Subgraphs Avoids enumerating non-connected k-subgraphs Competitive on large graphs with small k 4/11/2013Karakashian: Ph.D. Defense 45 cd eab

Solution Cover Problem is in NP-C Solution Cover Problem – Given a CSP with global constraints – is there a set of k solutions – such that ever tuple in the minimal CSP is covered by at least one solution in the set? Set Cover Problem Solution Cover Problem Set Cover Problem – Given a finite set U and a collection S of subsets of U – Are there k elements of S – Whose union is U? 4/11/2013Karakashian: Ph.D. Defense 46

W ITNESS BTD May Visit More Nodes than GAC W ITNESS BTD may search for the same solution more than once in C 2 〈 A,B,C,D 〉 = 〈 0,0,0,0 〉 No witness in C 3 〈 A,B,C,D 〉 = 〈 1,1,0,0 〉 Witness found Restart search in C 2 4/11/2013Karakashian: Ph.D. Defense 47 A B C D C1C1 C2C2 C3C3

#isnt. 230GAC Cl+proj-R( ∗,|(cl i )|)C Average Nogoods87, Goods27,180.38,811.1 Max Nogoods4,880,1278,224 Goods1,870,0511,069,081 completed (547): MEMOUT163