Spin dynamics of stripe-ordered layered nickelates Andrew Boothroyd Department of Physics, Oxford University Ni 2+ (S=1) Ni 3+ (S=1/2) Cu 2+ (S=1/2) Cu ~2.5+ La 2–x Sr x NiO 4 (La,Nd) 2–x (Sr,Ba) x CuO 4 (x~1/8) ● Spin waves in La 5/3 Sr 1/3 NiO 4 ● Magnetic ‘resonance’ ● quasi 1D spin correlations ● Inward dispersion in La 2 NiO 4.11 ● Low energy charge dynamics
Acknowledgements Paul Freeman Institut Laue-Langevin / Oxford University D. Prabhakaran Oxford University(Single crystals) Stephen HaydenUniversity of Bristol Hyungje Woo Brookhaven National Lab / ISIS / Oak Ridge John Tranquada Brookhaven National Lab Marcus Huecker Kenji NakajimaUniversity of Tokyo Michael JohnstonUniversity of Oxford James Lloyd-Hughes Mechthild Enderle Institut Laue-Langevin Jiri Kulda Arno Hiess Felix AltorferPaul-Scherrer Institut,Switzerland Christof Niedermayer Chris FrostISIS Facility Toby Perring
Stripe order in La 2–x Sr x NiO 4 x = 0 x = 1/4x = 1/3x = 1/2 (Tranquada et al, Cheong et al, Yoshizawa et al) ideal stripe structures Ni 2+ (S = 1) Ni 3+ (S = ½)
Stripe order in La 5/3 Sr 1/3 NiO 4
Constant-energy slices projected onto the a*b* plane. Data from MAPS spectrometer. Neutron scattering from La 5/3 Sr 1/3 NiO 4
Woo et al. PRB 72, (2005) 1. Spin wave model for La 5/3 Sr 1/3 NiO 4
Spin wave dispersion in La 5/3 Sr 1/3 NiO Q x (r.l.u.) Q y (r.l.u.) Linear spin wave model provides good description of Spin excitation spectrum for energies > ~30 meV
2. Mystery ‘resonance’ in spin excitation spectrum of La 5/3 Sr 1/3 NiO 4 unpolarized neutrons (MAPS time-of-flight, RAL) polarized neutrons (IN20 triple-axis, ILL) Boothroyd et al, PRB 67, (R) (2003) Out-of-plane anisotropy gap Broadening above 6 meV Q x (r.l.u.) Q y (r.l.u.)
Spin wave dispersion in La 5/3 Sr 1/3 NiO Q x (r.l.u.) Q y (r.l.u.)
E = 2.5 meV 3. Low energy spin fluctuations in La 5/3 Sr 1/3 NiO 4 Boothroyd et al, PRL 91, (2003) E = 5 meV E = 0 meV (elastic)
Diffuse inelastic scattering Consistent with quasi-1D AFM chains Low energy quasi-1D spin fluctuation in La 5/3 Sr 1/3 NiO 4 Scans along line B Scan along line A B
4. Inward dispersion of spin waves in La 2 NiO 4.11 Christensen et al. PRL 93, (2004) Vignolle et al. Nature Phys. 3, 163 (2007) Spin excitation spectrum of La 1.84 Sr 0.16 CuO Q x (r.l.u.) Q y (r.l.u.)
Inward dispersion of spin waves in La 2 NiO Q x (r.l.u.) Q y (r.l.u.) Freeman et al., JMMM 310, 760 (2007)
Inward dispersion of spin waves in La 2 NiO 4.11 Yao and Carlson, PRB 73, (2006) Linear spin wave theory J 1 = 0.1J J 1 = 0.5J
Lloyd-Hughes, PRB 77, (2008) Optical conductivity, THz spectroscopy x = x = Low energy charge dynamics in La 2–x Sr x NiO 4
Lloyd-Hughes, PRB 77, (2008) x = x = Low energy charge dynamics in La 2–x Sr x NiO 4 Thermally activated charge response with energy ~5meV
Summary — spin and charge excitations in La 2–x Sr x NiO 4 Summary — spin and charge excitations in La 2–x Sr x NiO 4 1. E > 30 meV: spin-wave-like modes on a rigid stripe superlattice; spin wave model for La 5/3 Sr 1/3 NiO 4 intra- and inter-stripe exchange 2. Mysterious magnetic ‘resonance’ peak at ~25 meV 3. AFM spin fluctuations along charge stripes 4. Inward magnetic dispersion observed at x ~ ¼ 5. Low energy charge mode at ~5 meV
Hybridization with another excitation?
Possible magnetic ground state for La 5/3 Sr 1/3 NiO 4 ? Klingeler et al; M. Long (unpublished) Q x (r.l.u.) Q y (r.l.u.) Non-collinear magnetic structure
Spin reorientation transition La 3/2 Sr 1/2 NiO 4 La 1.67 Sr 0.33 NiO 4 ● On cooling, spins rotate away from stripe direction ● Reorientation observed for < x < 0.5 ● Most prominent for x = 1/3 ( Df = 13 deg) and x = 1/2 ( Df = 26 deg) Freeman et al, PRB 66, (2002), Freeman et al, PRB 70, (2004) Lee et al, Phys. Rev. B 63, 60405(R) (2001),
Spin wave model for La 5/3 Sr 1/3 NiO 4 J = 15 ± 1.5 meV J’ = 7.5 ± 1.5 meV K c = 0.07 ± 0.01 meV Boothroyd et al. PRB 67, (2003)
Temperature dependence of 25meV mode Freeman et al, JPCM 20, (2008) Polarised neutron scattering
Determination of out-of-plane anisotropy gap 1.Compare spectra obtained with in-plane and out-of-plane scattering vectors 2.Separate different directional components of spin fluctuations by neutron polarization analysis S c = spin fluctuations along c axis S || = … … parallel to stripes x = 0.33
Spin excitations as function of x in La 2–x Sr x NiO 4 E = 40 meV Broadening when x 1/3 dispersion
Energy gap D = 1.45 ± 0.07 meV G = 1.54 ± 0.14 meV Fit to Lorentzian with gap D
Scans along line B Temperature dependence Diffuse inelastic scattering
Low energy mode follows zone boundary
Polarization of low energy mode Neutron polarization analysis of low energy mode: Intensity of spin fluctuations along c axis is factor 2.3 ± 0.4 larger than in plane