The Physics of HFT the Heavy Flavor Tracker at STAR Spiros Margetis Kent State University, USA Excited QCD 2010.

Slides:



Advertisements
Similar presentations
The STAR Heavy Flavor Tracker Flemming Videbæk For the STAR collaboration Brookhaven National Lab 1.
Advertisements

Explore QCD Emerging Property
The Heavy Flavor Tracker (HFT) The Silicon Vertex Upgrade of RHIC Spiros Margetis Kent State University, USA Excited QCD 2010, Slovakia.
Aug , 2005, XXXV ISMD, Czech X.Dong, USTC 1 Open charm production at RHIC Xin Dong University of Science and Technology of China - USTC  Introduction.
First Alice Physics Week, Erice, Dec 4  9, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese,
417 th WE-Heraeus-Seminar Characterization of the Quark Gluon Plasma with Heavy Quarks Physikzentrum Bad Honnef June 25-28, 2008 Ralf Averbeck, Heavy-Flavor.
Heavy Flavor Physics in HIC with STAR Heavy Flavor Tracker Yifei Zhang (for the STAR HFT Group) Hirschegg 2010, Austria Outline:  Physics motivation 
Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurements by Weak-Decayed Electrons at RHIC-PHENIX.
ISMD’05, Kromeriz, Aug 09  15, Heavy  Flavor (c,b) Collectivity – Light  Flavor (u,d,s) Thermalization at RHIC Kai Schweda, University of Heidelberg.
Charm & bottom RHIC Shingo Sakai Univ. of California, Los Angeles 1.
Physics of High Baryon Density,Trento, May 29  June 2, Charm with STAR Kai Schweda, University of Heidelberg A. Dainese, X. Dong, J. Faivre, Y.
Winter Workshop on Nuclear Dynamics – San Diego, 16 Mar. 2006John Harris (Yale) Suppression of Non-photonic Electrons at High Pt John W. Harris Yale University.
03/14/2006WWND2006 at La Jolla1 Identified baryon and meson spectra at intermediate and high p T in 200 GeV Au+Au Collisions Outline: Motivation Intermediate.
Interesting Physics beyond the QGP discovery phase Heavy flavor production Flavor dependence of QCD energy loss Jet studies and gluon-jet correlations.
STAR upgrade workshop, Yale, Jun , People: F. Bieser, R. Gareus, L. Greiner, H. Matis, M. Oldenburg, F. Retiere, H.G. Ritter, K.S., A. Shabetai(IReS),
Non-photonic electron production in STAR A. G. Knospe Yale University 9 April 2008.
SQM2006, 03/27/2006Haibin Zhang1 Heavy Flavor Measurements at STAR Haibin Zhang Brookhaven National Laboratory for the STAR Collaboration.
STAR Physics Program at RHIC Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
Recent measurements of open heavy flavor production by PHENIX Irakli Garishvili, Lawrence Livermore National Laboratory PHENIX collaboration  Heavy quarks.
QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, , India (2)Modern Physics.
Nu Xu1/28VIII International Workshop on Relativistic Aspects of Nuclear Physics, Rio de Janeiro, Brazil, 3-6, November, 2008 Explore the QCD Phase Diagram.
The Heavy Flavor Tracker (HFT) An Update Spiros Margetis Kent State University, USA STAR Collaboration meeting, 2010 Nov 14, BNL.
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
Nu Xu1/15 STAR Collaboration Meeting, BNL, February 24 – March 1, 2013 February 27, 2013 Status of STAR - A report to the Council Nu Xu.
Single Electron Measurements at RHIC-PHENIX T. Hachiya Hiroshima University For the PHENIX Collaboration.
Heavy Flavor Physics in STAR Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
Nu Xu1/30 Explore the QCD Phase Diagram Nu Xu Lawrence Berkeley National Laboratory Many Thanks to the Organizers ATHIC 2008, Tsukuba, Japan, Oct. 13 -
D 0 Measurement in Cu+Cu Collisions at √s=200GeV at STAR using the Silicon Inner Tracker (SVT+SSD) Sarah LaPointe Wayne State University For the STAR Collaboration.
Nu Xu1/28 Fluctuations, Correlations and RHIC Low Energy Runs, BNL, October 3 – 5, 2011 STAR Study QCD Phase Structure in STAR Experiment Nu Xu (1) Nuclear.
STAR RHIC AGS users meeting, May 30, Star Inner Tracking upgrade F. Videbaek STAR collaboration for the HFT upgrade group.
Nu Xu1/16STAR Collaboration Meeting, Nov. 12 – 17, 2010, BNL, USA STAR Experiment at RHIC: - Physics Programs - Management Issues Nu Xu.
Aug. 4-9, 2005, QM2005, Budapest X.Dong, USTC 1 Open charm production at RHIC Xin Dong University of Science and Technology of China - USTC.
Nu Xu1/33Nuclear Physics Seminar, LANL, October 21, 2009 STAR Experiment STAR Physics Program Nu Xu Lawrence Berkeley National Laboratory.
1 Jim Thomas - LBL The STAR Detector at RHIC. 2 Jim Thomas - LBL The STAR Heavy Flavor Tracker An Introduction and Brief Review of the Technical Design.
STAR Physics Program with the TOF Nu Xu for the STAR Collaboration Nuclear Science Division Lawrence Berkeley National Laboratory.
Open heavy flavor in STAR David Tlusty NPI ASCR, CTU Prague for the STAR collaboration STAR.
Heavy flavour capabilities with the ALICE TRD Benjamin Dönigus ISNP 2008 Erice/Sicily.
Open charm hadron production via hadronic decays at STAR
Heavy flavor production at RHIC Yonsei Univ. Y. Kwon.
1 STAR Open Heavy Flavor Measurements Gang Wang (UCLA) 1  Motivation  D 0 / D s / D*  Non-photonic electron  Summary.
Recent Charm Measurements through Hadronic Decay Channels with STAR at RHIC in 200 GeV Cu+Cu Collisions Stephen Baumgart for the STAR Collaboration, Yale.
//Nxu/tex3/TALK/2004/10USTC Collective Dynamics in High-Energy Collisions, USTC, October 18-19, 2004 Nu Xu 1 Charm Production at RHIC (1) Introduction.
Measurement of D-meson azimuthal anisotropy in Au+Au 200GeV collisions at RHIC Michael R. Lomnitz Kent State University Lawrence Berkeley National Laboratory.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
Nu Xu1/18STAR Decadal Plan Meeting at UIC, September 10 th, 2010 High-Energy Nuclear Collisions and QCD Phase Structure What is the phase structure of.
Non-photonic electron production in p+p collisions at √s=200 GeV Xiaozhi Bai for the STAR collaboration Central China Normal University University of Illinois.
1 Fukutaro Kajihara (CNS, University of Tokyo) for the PHENIX Collaboration Heavy Quark Measurement by Single Electrons in the PHENIX Experiment.
Nu Xu1/27International Symposium on Heavy Ion Physics, 17-20, November, 2008 Recent Results from the STAR Experiment at RHIC Nu Xu Lawrence Berkeley National.
OPEN HEAVY FLAVORS 1. Heavy Flavor 2 Heavy quarks produced in the early stages of the collisions (high Q2)  effective probe of the high-density medium.
JPS/DNPY. Akiba Single Electron Spectra from Au+Au collisions at RHIC Y. Akiba (KEK) for PHENIX Collaboration.
The Heavy Flavor Tracker (HFT) The Silicon Vertex Upgrade of RHIC Jaiby Joseph* for the STAR Collaboration * Kent State University, USA Lake Louise.
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
1 Guannan Xie Nuclear Modification Factor of D 0 Mesons in Au+Au Collisions at √s NN = 200 GeV Lawrence Berkeley National Laboratory University of Science.
Nu Xu1/20STAR Regional Meeting, VECC, India, November, 2008 STAR Experiment STAR at RHIC Nu Xu Lawrence Berkeley National Laboratory.
High Density Matter and Searches for Huan Z. Huang Department of Physics and Astronomy University of California, Los Angeles The STAR Collaboration.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Dec 2002 Craig Ogilvie 1 Physics Goals of Si Vertex Detector  Physics priorities latter part of this decade –spin carried by gluons:  G vs x –modification.
Quantitative Comparison of Viscous Hydro with Data What is needed to make progress: the STAR-flavored view Nu Xu (for STAR Collaboration) Nuclear Science.
STAR Physics Program Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to the organizers: Z.T. Liang, Q.H. Xu, P. Zhuang.
Nu Xu“Hot and Dense Matter in the RHIC-LHC Era”, Mumbai, India, February 12-14, 20081/27 Many Thanks to the Conference Organizers Partonic EoS at RHIC.
Heavy Flavor Physics in STAR Flemming Videbæk Brookhaven National Laboratory For the STAR collaboration.
Heavy Flavor Measurements at RHIC&LHC W. Xie (Purdue University, West Lafayette) W. Xie (Purdue University, West Lafayette) Open Heavy Flavor Workshop.
Observation of antimatter hypernuclei at RHIC Jinhui Chen Kent State University for the STAR Collaboration 10 th International Conference on Hypernuclear.
The Heavy Flavor Tracker (HFT)
Physics of the Heavy Flavor Tracker at STAR Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Nu Xu.
The Heavy Flavor Tracker (HFT)
ALICE and the Little Bang
Charm production at STAR
Heavy Ion Physics in RUN14-16
Presentation transcript:

The Physics of HFT the Heavy Flavor Tracker at STAR Spiros Margetis Kent State University, USA Excited QCD 2010

The Bottom Line ① Hot and dense matter with strong collectivity has been formed in Au+Au collisions at RHIC. Study the properties of the new form of matter requires more penetrating probes like heavy quark. New micro- vertex detector is needed for STAR experiment. ② PHENIX has a similar approach, but with a different philosophy. ③ DM12: “Measure production rates, high pT spectra, and correlations in heavy-ion collisions at √s NN = 200 GeV for identified hadrons with heavy flavor valence quarks to constrain the mechanism for parton energy loss in the quark-gluon plasma.”

STAR Physics Focus 1) At 200 GeV top energy - Study medium properties, EoS - pQCD in hot and dense medium 2) RHIC beam energy scan - Search for the QCD critical point - Chiral symmetry restoration Spin program - Study proton intrinsic properties Forward program - Study low-x properties, search for CGC - Study elastic (inelastic) processes (pp2pp) - Investigate gluonic exchanges

Partonic Energy Loss at RHIC Central Au+Au collisions: light quark hadrons and the away-side jet in back-to- back ‘jets’ are suppressed. Different for p+p and d+Au collisions. Energy density at RHIC:  > 5 GeV/fm 3 ~ 30  0 Explore pQCD in hot/dense medium R AA (c,b) measurements are needed! STAR: Nucl. Phys. A757, 102(2005).

 -meson Flow: Partonic Flow “  -mesons (and other hadrons) are produced via coalescence of seemingly thermalized quarks in central Au+Au collisions. This observation implies hot and dense matter with partonic collectivity has been formed at RHIC” In order to test early thermalization: v 2 (p T ) of c- and b-hadrons data are needed! STAR: Phys. Rev. Lett. 99, (2007).

Low p T (≤ 2 GeV/c): hydrodynamic mass ordering High p T (> 2 GeV/c): number of quarks ordering s-quark hadron: smaller interaction strength in hadronic medium light- and s-quark hadrons: similar v 2 pattern => Collectivity developed at partonic stage! Partonic Collectivity at RHIC STAR: QM2009 STAR: preliminary

nuclei hadron gas CSC quark-gluon plasma TETE Baryon Chemical Potential Critical Point? Temperature Early Universe T E RHIC, FAIR 1 T ini, T C LHC, RHIC 3 Phase boundary RHIC, FAIR, NICA The QCD Phase Diagram and High-Energy Nuclear Collisions The nature of thermalization at the top energy:  Heavy quarks  Di-lepton The nature of thermalization at the top energy:  Heavy quarks  Di-lepton

Quark Masses - Higgs mass: electro-weak symmetry breaking (current quark mass). - QCD mass: Chiral symmetry breaking (constituent quark mass). éStrong interactions do not affect heavy-quark mass. éNew scale compare to the excitation of the system. éStudy properties of the hot and dense medium at the foremost early stage of heavy-ion collisions. éExplore pQCD at RHIC. Total quark mass (MeV) X. Zhu, et al, Phys. Lett. B647, 366(2007).

Charm Cross Sections at RHIC 1)Large systematic uncertainties in the measurements 2)New displaced, topologically reconstructed measurements for c- and b-hadrons are needed  Upgrade

Heavy Quark Energy Loss Surprising results - - challenge our understanding of the energy loss mechanism - force us to RE-think about the collisional energy loss - Requires direct measurements of c- and b-hadrons. 1) Non-photonic electrons decayed from - charm and beauty hadrons 2) At p T ≥ 6 GeV/c, R AA (n.p.e.) ~ R AA (h ± )! contradicts to naïve pQCD predictions STAR: Phys. Rew. Lett, 98, (2007).

Decay e p T vs. B- and C-hadron p T Key: Directly reconstructed heavy quark hadrons! Pythia calculation Xin Dong, USTC October 2005

STAR DetectorMRPC ToF barrel 100% ready for run 10 BBC PMD FPD FMSFMS EMC barrel EMC End Cap DAQ1000 FGT Completed Ongoing MTD R&D HFT TPC FHC HLT

MeasurementsRequirements Heavy Ion heavy-quark hadron v 2 - the heavy-quark collectivity - Low material budget for high reconstruction efficiency - p T coverage ≥ 0.5 GeV/c - mid-rapidity - High counting rate heavy-quark hadron R AA - the heavy-quark energy loss - High p T coverage ~ 10 GeV/c p+p energy and spin dependence of the heavy-quark production - p T coverage ≥ 0.5 GeV/c gluon distribution with heavy quarks - wide rapidity and p T coverage Requirement for the HFT

D 0 Reconstruction Efficiency - Central Au+Au collisions: top 10% events. - The thin detector allows measurements down to p T ~ 0.5 GeV/c. - Essential and unique!

Heavy Quark Production NLO pQCD predictions of charm and bottom for the total p+p hadro-production cross sections. Renormalization scale and factorization scale were chosen to be equal. RHIC: 200, 500 GeV LHC: 900, GeV Ideal energy range for studying pQCD predictions for heavy quark production. Necessary reference for both, heavy ion and spin programs at RHIC. RHIC LHC

Charm Hadron v GeV Au+Au minimum bias collisions (500M events). - Charm collectivity  drag/diffusion constants  medium properties! Charm-quark flow  Thermalization of light-quarks! Charm-quark does not flow  Drag coefficients

Charm Hadron R CP - Significant Bottom contributions in HQ decay electrons GeV Au+Au minimum bias collisions (|y|< M events). - Charm R AA  energy loss mechanism! R CP =a*N 10% /N (60-80)% NEW

Charm Baryon/Meson Ratios Y. Oh, C.M. Ko, S.H. Lee, S. Yasui, Phys. Rev. C79, (2009). S.H. Lee, K.Ohnishi, S. Yasui, I-K.Yoo, C.M. Ko, Phys. Rev. Lett. 100, (2008). QGP medium  C  pK -  + D 0  K -  -+ 2-body collisions by c and ud 3-body collisions by c, u and d

Λ C Measurements Λ C (  p + K + π): 1)Lowest mass charm baryon 2)Total yield and Λ C /D 0 ratios can be measured. NEW

D s Reconstruction D s → K + K - π (BR 5.5%) D s →φπ→ K + K - π (BR 2.2%) mass = ± 0.34 MeV decay length ~ 150 μm Work in progress … 200 GeV central Au+Au Ideal PID Power-law spectrum with: n = 11, = 1 GeV/c 0.5B events will work! 200 GeV Central Au+Au Collisions at RHIC NEW

Strategies for Bottom Measurement (1.a) Displaced vertex electrons (TOF+HFT) (1) All Charm states ( D 0,±, D s,  C ) (2) Charm decay electrons (Charm) (1.a) - (2) Bottom decay electrons  Some Bottom states (Statistics limited at RHIC) Measure Charm and Bottom hadron: Cross sections, Spectra and v 2   

c- and b-decay Electrons - DCA cuts  c- and b-decay electron distributions and R CP GeV Au+Au minimum biased collisions (|y|< M events) R CP =a*N 10% /N (60-80)% H. van Hees et al. Eur. Phys. J. C61, 799(2009). (arXiv: ) NEW

The di-Lepton Program at STAR TOF + TPC + HFT (1) σ (2) v 2 (3) R AA Mass (GeV/c 2 ) p T (GeV/c) ρ ϕ J/ψ DY, charm Bk Direct radiation from the Hot/Dense Medium Chiral symmetry Restoration  A robust di- lepton physics program extending STAR scientific reach PHENIX:

PHENIX and STAR Comparison - 2-layer Si hybrid pixels: x/x 0 ~ 1.2%; 2.5cm inner radius; fast readout - 2-layer Si strips, x/x 0 ~ 2% p T ≤ 2 GeV/c: e ± 2 < p T ≤ 6 GeV/c: D-mesons… 1 < p T ≤ 6 GeV/c: B  J/  - 2-layer CMOS: x/x 0 ~ 0.37% per layer; 2.5cm inner radius; 200  s integration - 1-layer* Si strips - SSD: x/x 0 ~ 1% e, D 0,±,s,*,  c, B… 0.5 < p T < 10 GeV/c: v 2, R AA D-D correlation functions PHENIX VTX STAR HFT

Nu Xu25/25 Physics of the Heavy Flavor Tracker at STAR 1) The STAR HFT measurements (p+p and Au+Au) (1) Heavy-quark cross sections: D 0,±,*, D S,  C, B… (2) Both spectra (R AA, R CP ) and v 2 in a wide p T region: GeV/c (3) Charm hadron correlation functions (4) Full spectrum of the heavy quark hadron decay electrons 2) Physics (1) Measure heavy-quark hadron v 2, heavy-quark collectivity, to study the medium properties e.g. light-quark thermalization (2) Measure heavy-quark energy loss to study pQCD in hot/dense medium e.g. energy loss mechanism (3) Measure di-leptions to study the direct radiation from the hot/dense medium (4) Analyze hadro-chemistry including heavy flavors

Nu Xu26/25 Projected Run Plan 1) First run with HFT: 200 GeV Au+Au  v 2 and R CP with 500M M.B. collisions 2) Second run with HFT: 200 GeV p+p  R AA 3) Third run with HFT: 200 GeV Au+Au  Centrality dependence of v 2 and R AA  Charm background and first attempt for electron pair measurements   C baryon with sufficient statistics

Auxiliary Slides (1)- R AA PHENIX VTX STAR HFT Blue: Assumed c decay e Red: Assumed b decay e Open Symbols: M.B. events, not trigger Filled Symbols: triggered with HT Cuts: DCA on decay electrons Events: 200 GeV 500 M.B. Au + Au events Y. Akiba, PHENIX, 2008.

STAR HFT Auxiliary Slides (2)- v 2 PHENIX VTX Blue: c-quark flows // Red: c-quark does not Dashed-curves: Assumed D 0 -mesom v 2 (p T ) Symbols: D decay e v 2 (p T ) Vertical bars: errors for b decay e v 2 (p T ) from 200 GeV 500M minimum bias Au + Au events Cuts: DCA on decay electrons Y. Akiba, PHENIX, 2008.