12 After all the arguments last year, Santa has sorted out the sleeping quarters for the reindeer. Rudolph, Donner, Blitzen, Dasher, Comet, Cupid, Vixen,

Slides:



Advertisements
Similar presentations
Algebra 4. Solving Linear Equations
Advertisements

Square Folds For each of these challenges, start with a square of paper. Fold the square so that you have a square that has a quarter of the original area.
12 7 Reindeer and 5 elves partner each other at the annual ‘Dance for Elves and Reindeer’. The dances are so energetic that no reindeer or elf can manage.
Principles of Good Maths Teaching
Algebra Problems… Solutions Algebra Problems… Solutions © 2007 Herbert I. Gross Set 7 part 2 By Herb I. Gross and Richard A. Medeiros next.
? What is Computer Science and what can you do with it.
Mr Barton’s Maths Notes
FRACTIONS With Scooby Doo by Mr. Meute, Foster Elementary Fourth Grade
Mar. 2005Measurement PuzzlesSlide 1 Measurement Puzzles A Lesson in the “Math + Fun!” Series.
Spot the Pattern On the next slide is a grid and on each subsequent slide there are 4 pieces of information. Can you work out how the grid should be coloured.
Mr Barton’s Maths Notes
Mr Barton’s Maths Notes
Helping your child with Maths In Year 2. Helping your child with Maths Try to make maths as much fun as possible - games, puzzles and jigsaws are a great.
Standards Unit N7: Using Percentages to Increase Quantities 1 -2 hours depending upon exactly which sets of cards are used. Groups of 3 activity. Important.
Lesson 4: Percentage of Amounts.
Day 1.
31 lesson starters for all abilities
Helping Your Child with Their Maths at Home
Chapter 2 Arithmetic Strategies & Area
PRIMARY SCHOOLS’ MATHEMATICS CHALLENGE x 5 ÷ 4 Which number must go into the box on the right side of the scales to balance them with the left.
Maths Test Top Tips to Avoid the SAT's Trap. Tip – Get the units all the same Change them all into the same units to see which is smallest!
Extending the Definition of Exponents © Math As A Second Language All Rights Reserved next #10 Taking the Fear out of Math 2 -8.
Question 1 Three circles in a straight line ADD UP TO 100 Write in the missing numbers L
when multiplied by itself,
PRIMARY SCHOOLS’ MATHEMATICS CHALLENGE 2009 Pinocchio's nose is 5cm long. Each time he tells a lie his nose doubles. How long is his nose after telling.
 When you receive a new you will be shown a highlighted in yellow box where your can be found  To open your new just double click.
Standard What is the y-intercept of the graph of 4x + 2y = 12
summer term mathematics activities for year six
SEMI-FINAL ROUND QUESTIONS WITH ANSWERS POWERPOINT.
Imagine moving the coloured pieces
Recording Multiplication Calculations A guide to the progression and written methods for Multiplication used at: Verwood CE VA First School Trinity First.
Revision on Matrices Finding the order of, Addition, Subtraction and the Inverse of Matices.
Problem Solving 1. Steps to world problem solving process 1. Understand the Problem 2. Devise a plan 3. Carry out the plan 4. Look back 5. MAKE SURE YOU.
Logic Development Problems. Puzzle #1 You have a measurement scale where on both sides you can put some balls for weighing. You have a set of eight balls,
Recording Multiplication Calculations
Resource Review Excel formula basics Demonstrate how to enter manual formulas Examine some of the available functions and their usage Discuss the.
Securing number facts, relationships and calculating.
Year 7 Written Calculations
Metric Mania A Stand Alone Lesson on Metric Prefixes.
Next Contents Back. Next Contents Back The Integers are natural numbers including 0 (0, 1, 2, 3,...) and their negatives (0, −1, −2, −3,...). They are.
Part 1 Learning Objectives To understand that variables are a temporary named location to store data and that programmers work with different data types.
KS3 Mathematics N5 Using Fractions
Year 9 Mathematics Algebra and Sequences
Parallelograms and Trapezoids
KS3 Mathematics N8 Ratio and proportion
summer term mathematics activities for year six
Maths Test Top Tips to Avoid the Trap.
Judy was organizing her post-it notes by color
Unit B2 Day 5 This unit lasts for 3 weeks.
KS3 Mathematics A2 Equations
Division.
Linear and quadratic equations When one equation in a pair of simultaneous equations is quadratic, we often end up with two pairs of solutions. For.
Personalize Practice with Accelerated Math
vms x Year 8 Mathematics Equations
Reindeer Names.
The lowest common multiple The lowest common multiple (or LCM) of two numbers is the smallest number that is a multiple of both the numbers. For small.
Place Value and Fractions
N6 Calculating with fractions
Year 7 Written Calculations
Decimals, Percentages and Fractions
A10 Generating sequences
Starter.
Presentation transcript:

12 After all the arguments last year, Santa has sorted out the sleeping quarters for the reindeer. Rudolph, Donner, Blitzen, Dasher, Comet, Cupid, Vixen, Dancer & Prancer are all eager to know which pen will be theirs for the festive season. However, instead of simply telling them which pens to go to, Santa has left a set of clues

12 Rudolph will be in pen number 1 (of course) No reindeer will be in a pen that has the same number as the number of letters in his or her name. Dancer and Prancer will be in pens which are numbered with square numbers Cupid is not next to Prancer In each row and column there will be a reindeer with a 5 letter name, a 6 letter name and a 7 letter name Cupid’s number + Vixen’s number = Dasher’s number

11 At a festive gathering, Uncle Joe is again demonstrating his amazing mathematical abilities. He claims to easily be able to square numbers ending in 5 in his head. Here is an example of how he does it for 75 2 : ‘Split’ the number Work out 7x8 and 5x5 separately Put the answers together 75 2 = 5625 Does it work for these numbers: ?

10 Aunt Dorothy has 17 young nieces and nephews and she likes to put together a Christmas stocking filled with small presents for each one. However, she likes each child to have a different set of presents to all the other nieces and nephews. She needs 6 presents to fill each stocking. She could try to find 102 different presents so that they all have completely different sets of presents, but this would take a very long time. What’s the minimum number of different items she needs to find?

9 Santa Claus is making 9 Christmas puddings. He’s made them all of equal size and weight, and intended to put a silver coin in each one. Unfortunately he has one coin left over, which means that one of the puddings is without a coin… He needs to work quickly (whilst Mrs Claus is feeding the reindeer) to identify the pudding, but he only has a simple set of scales to hand. How many times does he need to use the scales to be sure which pudding is without its coin?

8 Frosty started life 2 metres tall. Each time there is a sunny day, he loses 20% of his current height. How many sunny days will it be before he’s reduced to a small pile of snow of less than 10cm?

7 Three of the Seven Dwarves are arguing about a restaurant bill. They’ve worked out that Grumpy (yellow hat) owes half the bill, Bashful (orange hat) owes a third and Doc (red hat) owes an eighth of it. The bill is £23, but they each only have pound coins, The manager arrives and suggests they round it up to £24 instead as that will be easier to split. They are all happy with this and the manager gets £23… how can this be?

6 Place the numbers 1 to 12 in the circles (once each) so that each row of 4 numbers adds up to the same total.

5 5 machines are making sweets. They are all supposed to be making them exactly the same size, shape and mass. Unfortunately, one of the machines is making them 1 gram too heavy. How can the operator identify which machine it is by weighing just one batch of sweets?

4 Two identical large equilateral triangles form a ‘regular’ star. What fraction of the star is shaded?

3 All is not well in the Claus household. Santa wants to put up some lights… …but Rudolph, who is obsessed with numbers and sequences, has tinkered with them so that each one will only light up if the number that Santa enters appears in a certain sequence (a different sequence for each light). It should look like the set below. Please help Santa!

2 In each of the word sums on the next slide replace each letter by a digit from 0 to 9. The same letter is replaced by the same digit within a sum, and the sum must ‘add up’ correctly. Each digit can only be used once in each word sum (they’re not all the same solutions). Example: ONE432 +ONE could be+432 TWO864 Notice that ‘O’ is replaced by ‘4’ in all places

2 EAT +EAT FULL SNOW +MAN COLD VIXEN +VIXEN COMET COMET +COMET DASHER SMILE +SMILE HAPPY

1 The numbers 1 to 15 have all been assigned a letter. Solve the clues on the next slide to crack the code below (dots mark the end of each word): ; A x N x (O x E + L)

1a 2T = 12G>IA 2 = 25 AE = UG+I = 9V = 3D L 2 = LY+T = SN+G = 20 2G = S3E = 9 H+1 = OR-E = Y

1b 2N+I = 28A 2 = 252H-T = 12 N+2I = 17H+T = 15 AE = UG= 49 ½ (V-D) 2 = Y 2 L 2 = L2G = SR 2 -O 2 =21 (x + E)(x + Y) = x 2 +11x +24 Y>E

Teacher notes: Twelve Days of Christmas This is a selection of short activities and puzzles – and some a little longer – with a slightly festive twist to count down to the end of term. They could be used as starter activities for a wide range of students in KS3 and KS4 or as a bit of fun for Post-16 students. Some have natural extensions that would make them more challenging. In the teacher notes are answers for all of the problems and suggestions for additional questions for some of the problems.

Teacher notes: Twelve Days of Christmas 12: You could print out slide 3 for students to work from 1 Rudolph2 Cupid3 Donner 4 Dancer5 Blitzen6 Vixen 7 Comet8 Dasher9 Prancer

Teacher notes: Twelve Days of Christmas 11: Yes, this method always works = = = Try for other numbers. Additional question: why does this work? The number ‘P’5 can be written as 10P+5 (10P+5) 2 = 100P P +25 = 100P(P+1) + 25 The 100 multiplier ‘shifts’ the answer to P(P+1) into the ‘hundreds’ column and beyond, leaving space for the ‘25’

Teacher notes: Twelve Days of Christmas 10: 8 different items needed It’s probably easiest thinking about this in terms of what she doesn’t put in. If she had 7 different items, she would have to leave 1 item out each time, so there are only 7 ways to do this. If she had 8 different items, she would need to leave 2 out of each stocking. There would be 8 C 2 possibilities, which is 28; she needs 17, so this is sufficient. Alternative approach to 8 C 2 Shaded cells indicate which pairs of presents can be left out: There are 28 pairs. &

Teacher notes: Twelve Days of Christmas 9: Just twice. We know that the pudding without the coin will be lighter. Group the puddings into 3 sets of 3 (A, B & C) Identify which set of 3 the lighter pudding is in by loading set A on one side and set B on the other. If one side rises, it’s within that set of 3, if they balance, it’s within set C. From the set of 3, put one pudding on one side and one on the other. If one side is lighter, it has been identified, if they balance, it’s the other pudding. Additional question: what if there were 27 puddings? (just 3 comparisons needed). Recommended to change the initial problem to 27 puddings for more challenge.

Teacher notes: Twelve Days of Christmas 8: If Frosty is built on Day 1, then on Day 15 he drops below 10 cm.

Teacher notes: Twelve Days of Christmas 7: The Dwarves were incorrect in their initial calculations: 1+1+1=

Teacher notes: Twelve Days of Christmas 6: One solution is shown. Hint: What must the total for each line be? Each number is used twice, so the sum for the whole star is 2x(1+2+3…+11+12) = ÷ 6 = 26 This forum This forum has a good explanation about how to find solutions logically.

Teacher notes: Twelve Days of Christmas 5: Sweet problem. Take: 1 sweet from machine 1 2 sweets from machine 2 3 sweets from machine 3 4 sweets from machine 4 5 sweets from machine 5. Weight them all together. The number of grams over the ‘proper’ weight will tell her which machine is malfunctioning.

Teacher notes: Twelve Days of Christmas 4: 1/48 th The middle hexagon is equal in area to the area of the 6 outside points. The interior hexagon has been divided into 6 similar shapes. One of the sections has been divided into 4 similar triangles. Can you show they are similar?

Teacher notes: Twelve Days of Christmas 3: You will need the Excel file ‘Christmas Lights Sequence’; macros must be enabled for this file to work. The aim of this activity is to light all 4 lights simultaneously, where each light is linked to a different sequence. A number is entered into the yellow box and ‘checked’ if the number is in the sequence linked to the light, the light will appear, if not it remains hidden. Through entering a range of values, students work out what the 4 number sequences are and find the number that will light all 4 lights. Each sequence is linear. Eight sets of sequences are provided: for sequences 1,3,5,& 7 it is possible to light all 4 lights simultaneously, for sequences 2,4,6 & 8 it is not. This activity encourages problem solving and reasoning. Giving all students time to think and explain is important.

Teacher notes: Twelve Days of Christmas 3: This is designed as a whole class activity; mini-whiteboards could be used to encourage participation by ‘voting’ for numbers or predicting what will happen. Possible structure and questioning. Explain that the intention is to make all 4 lights appear. Ask for a value to try and check it to see which lights appear. Ask for several more values and check each. Ask if anyone has any ideas about what numbers and/or sequences seem to be linked to which lights. Ask if students to give you a number to light a specific light. Give a number and ask students to predict which lights it will make appear. This is helpful if sequences don’t coincide as it encourages reasoning and explanation. Ask if anyone can give a number that will light all 4 lights. Ask if anyone can give a different number to light all 4 lights… is it just double the first solution? Why not? This is a very common misconception. For sequences 2, 4, 6 & 8 ask if anyone can explain why it is not possible to make all 4 appear..

Teacher notes: Twelve Days of Christmas 3: The file uses set 1 initially. On the ‘change values’ tab it is possible to select a different set of values (1 to 8) – you might choose to do a couple of sets that work and then choose one that doesn’t. Set 1: 23 Set 2: not possible to light 2 & 3 together Set 3: 60 Set 4: not possible to light 1 & 2 or 3 & 4 together Set 5: 61 Set 6: not possible to light 1 & 2 together Set 7: 86 Set 8: not possible to light 2 & 4 or 3 & 4 together Sets 9 and 10 are left blank for you to insert your own sequences or for students to devise their own sets to challenge their peers.

Teacher notes: Twelve Days of Christmas 2: Word Sums The instructions for these are straightforward – and they simply rely on the rules of addition, however, some are quite tricky to solve, whilst some have several solutions. A solution for each one is given on the next slide.

EAT +EAT FULL SNOW +MAN COLD VIXEN +VIXEN COMET SMILE +SMILE HAPPY Teacher notes: Twelve Days of Christmas COMET +COMET DASHER

1: Coded message. 1a and 1b both have the same solutions, but 1b is more challenging, using quadratics and simultaneous equations. Answers: 1L 2I 3E 4D 5A 6T 7G 8Y 9H 10O 11R 12V 13N 14S 15U “Have a great holiday everyone; see you again in 2015” ‘Sticking points’ 1a: students should be able to find 4 letters quite easily, they then need to use G+I = 9 and realise that there is only one pair of numbers left which add up to 9, G>I enables them to move forward. Similarly, they will get to a point near the end when they will need to realise that only one pair of numbers remains which would work for V=3D