Typical transducer Microphone Microprocessor Typical signal generator circuit Signal intensity Time Sound Parameter Signal intensity Time Signal intensity.

Slides:



Advertisements
Similar presentations
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Advertisements

Lecture 7: Basis Functions & Fourier Series
Chapter 4 DC to AC Conversion (INVERTER)
Fourier Transform – Chapter 13. Image space Cameras (regardless of wave lengths) create images in the spatial domain Pixels represent features (intensity,
Note To be transmitted, data must be transformed to electromagnetic signals.
Sampling process Sampling is the process of converting continuous time, continuous amplitude analog signal into discrete time continuous amplitude signal.
Chapter 7 Principles of Analog Synthesis and Voltage Control Contents Understanding Musical Sound Electronic Sound Generation Voltage Control Fundamentals.
Review of Frequency Domain
Properties of continuous Fourier Transforms
Lecture 8: Fourier Series and Fourier Transform
Time and Frequency Representation
Unit 7 Fourier, DFT, and FFT 1. Time and Frequency Representation The most common representation of signals and waveforms is in the time domain Most signal.
ES 400 Review. Continuous Time Signal Goal: Use mathematics to analyze circuits and system.
Leo Lam © Signals and Systems EE235. Transformers Leo Lam ©
SAMPLING & ALIASING. OVERVIEW Periodic sampling, the process of representing a continuous signal with a sequence of discrete data values, pervades the.
CH#3 Fourier Series and Transform
Chapter 15 Fourier Series and Fourier Transform
Leakage & Hanning Windows
PULSE MODULATION.
DSP. What is DSP? DSP: Digital Signal Processing---Using a digital process (e.g., a program running on a microprocessor) to modify a digital representation.
Discrete-Time and System (A Review)
Vibrationdata 1 Unit 5 The Fourier Transform. Vibrationdata 2 Courtesy of Professor Alan M. Nathan, University of Illinois at Urbana-Champaign.
Lecture 1 Signals in the Time and Frequency Domains
Chapter #1: Signals and Amplifiers
Lecture 1 Introduction to Electronics Rabie A. Ramadan
Chapter 4. Angle Modulation
FOURIER ANALYSIS TECHNIQUES
The Story of Wavelets.
Fundamentals of Electric Circuits Chapter 17
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
Module 2 SPECTRAL ANALYSIS OF COMMUNICATION SIGNAL.
Wireless and Mobile Computing Transmission Fundamentals Lecture 2.
EE210 Digital Electronics Class Lecture 2 March 20, 2008.
Vibrationdata 1 Unit 5 The Fourier Transform. Vibrationdata 2 Courtesy of Professor Alan M. Nathan, University of Illinois at Urbana-Champaign.
Fundamentals of Electric Circuits Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
October 29, 2013Computer Vision Lecture 13: Fourier Transform II 1 The Fourier Transform In the previous lecture, we discussed the Hough transform. There.
Basic Operation on Signals Continuous-Time Signals.
Fourier series: Eigenfunction Approach
1 ECE 3336 Introduction to Circuits & Electronics Note Set #8 Phasors Spring 2013 TUE&TH 5:30-7:00 pm Dr. Wanda Wosik.
Chapter 2 Signals and Spectra (All sections, except Section 8, are covered.)
CT1037N Introduction to Communications Signal Representation & Spectral Analysis Er. Saroj Sharan Regmi Lecture 05.
THE LAPLACE TRANSFORM LEARNING GOALS Definition
CH#3 Fourier Series and Transform
ES97H Biomedical Signal Processing
Vibrationdata 1 Unit 6a The Fourier Transform. Vibrationdata 2 Courtesy of Professor Alan M. Nathan, University of Illinois at Urbana-Champaign.
Lecture 2: Measurement and Instrumentation. Time vs. Frequency Domain Different ways of looking at a problem –Interchangeable: no information is lost.
Chapter2 : SIGNALS 1st semester King Saud University
Motivation for the Laplace Transform
Alexander-Sadiku Fundamentals of Electric Circuits
Topics 1 Specific topics to be covered are: Discrete-time signals Z-transforms Sampling and reconstruction Aliasing and anti-aliasing filters Sampled-data.
The Fourier series handles steady-state sinusoidal functions, but does not have the ability to model transients effectively. As we have seen, the Fourier.
1 EE2003 Circuit Theory Chapter 17 The Fourier Series Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
EEE 332 COMMUNICATION Fourier Series Text book: Louis E. Frenzel. Jr. Principles of Electronic Communication Systems, Third Ed. Mc Graw Hill.
Chapter 2. Signals and Linear Systems
Frequency Domain Representation of Biomedical Signals.
Fourier Transform and Spectra
CH#3 Fourier Series and Transform 1 st semester King Saud University College of Applied studies and Community Service 1301CT By: Nour Alhariqi.
FOURIER ANALYSIS TECHNIQUES Fourier series permit the extension of steady state analysis to general periodic signal. FOURIER SERIES LEARNING GOALS FOURIER.
Digital Image Processing Lecture 8: Fourier Transform Prof. Charlene Tsai.
Chapter 17 The Fourier Series
Signal Fndamentals Analogue, Discrete and Digital Signals
Chapter 4 Dynamical Behavior of Processes Homework 6 Construct an s-Function model of the interacting tank-in-series system and compare its simulation.
Chapter 4 Dynamical Behavior of Processes Homework 6 Construct an s-Function model of the interacting tank-in-series system and compare its simulation.
SIGNALS PROCESSING AND ANALYSIS
SAMPLING & ALIASING.
UNIT-8 INVERTERS 11/27/2018.
Fundamentals of Electric Circuits Chapter 18
EE210 Digital Electronics Class Lecture 2 September 03, 2008
CSE 313 Data Communication
Presentation transcript:

Typical transducer Microphone Microprocessor Typical signal generator circuit Signal intensity Time Sound Parameter Signal intensity Time Signal intensity Time Power supply (a) (b) (c) (d) Output Typical FM signal Typical PWM Signal Some of the signals originated from different different signal generato- rs. In (a), the signal is generated from the o/p of a transducer. In (b), the signal has been generated from the o/p of a Microphone, a transduc- er. On the other hand, in (c), the signal has been generated from a typical signal generator circuit, where as in (d), it has been generated from a microprocessor. The sig- nal in (c) and (d) are FM signal and PWM signal respectively. All signals are analog signals. The horizontal axis refers to time axis.

Electronic filter A signal containing All the frequency components Particular frequency Component (s) of interest For practical use, if we require a signal, which should have a single frequency component or a group of frequency components then we need to fed the original signal, containing all the frequency components to an electronic filter, in order to extract the frequency component (s) of interest. The process is called filtering. The input to the filter is ‘signal’ and the output of the filter is also ‘signal’. However, their frequency contents are not same.

Time Amplitude Time Amplitude Time Amplitude DC Signal (frequency = 0) Time Amplitude C B A D T (a) (b) (c) (d) Illustration of some of the typical signals as far as their frequency contents are concerned. (a) is a DC signal, with amplitude A, (b) shows a sine and a cosine signal, with peak amplitudes B & frequency f, in each case. In (c) a square wave signal with amplitude C over certain period and amplitude zero over certain period, containing many frequency components, has been shown. (d) is a gate signal, that contains all the frequencies.

Analog signal Time Sampled signal Sample-1 Sample-2Sample-3 Time Discrete signal Time Discrete levels (a) (b) (c) While an analog signal is continuous in both time and amplitude, a discrete signal is discrete in both time and amplitude. In the discrete domain the signal is defined only by discrete instants of time i.e., the time-variable of the signal takes on only certain values. The value of the signal is sampled and measured at certain intervals in time and each measurement is referred to as a sample. The height of each sample represents the strength of the signal at that sampling instant. The discrete signals are derived from the sampled signal.

SamplingQuantisation Analog Signal Discrete Signal Sampled Signal Coding Digital Signal The discrete-time signal is generated from the sampled signal by the process of quantisation. The discrete-time signal is then coded in order to obtain the digital signal. This process is called coding. A schematic block diagram as to know how digital signal is generated from the analog signal is shown in this figure.

Microphone Sound Equivalent electrical signal Amplitude Time A typical analog signal generated from the output of a microphone is shown. The time-amplitude plot or time domain plot of the microphone output only provides amplitude information at various instances. It does not provide any information as far as frequency content of the signal is concerned. One can be interested to know the frequency content of the signal.

Mathematical treatment (Transformation of time domain signal to frequency domain) FT Time domain signalFrequency domain signal Mathematical treatment (Transformation of time domain signal to time-frequency domain) STFT or WT Time domain signalSignal in time-frequency domain (a) (b) Frequency components 1.Frequency components 2.Time of occurrence of frequency components To know the frequency contents and the time of occurrence of frequency components we need to analyze them in many domains. Once the signal is processed and subsequently plotted, its real face can be opened up. Mathematical treatment is needed in order to obtain frequency information of the signal.

Amplitude Time A T Tim period Peak amplitude A simple sinusoidal signal (periodic) v(t) is shown in the time domain. The peak amplitude is A and fundamental period is T. It contains only one frequency component.

Amplitude Time T Tim period A complex periodic signal v(t) is shown in the time domain. The fundamental period is T. It contains many frequency components.

Amplitude Frequency f A (a) (b) (c) One-sided (Trigonometric form) Frequency Two-sided (Exponential form) DC Component In the frequency domain the sinusoids are plotted as a vertical line and the length of the vertical line represents the peak amplitude of the sinusoids. These are called spectral components, which are discrete in nature. The spectral components are located at an interval of, the fundamental frequency. This signifies that if the duration of time period increases then the spacing between the spectral components decreases. Longer time periods relate to smaller frequency spans.

Amplitude Time Threshold level Nonperiodic signal (Temperature sensor output) 23 seconds 2 hours This figure shows another example of a nonperiodic signal. The signal is the output of the temperature sensor, which is located at the vicinity of the bearing system of a high-speed spindle machine rotating at a speed more than 15,000 revolutions per minute. The temperature sensor, is a protecting device for the spindle machine. It measures the transient temperature of the bearing system on-line. If the temperature of the bearing system is more than the threshold limit, the spindle has to be stopped, so that no serious damage would occur.

Frequency Amplitude of Spectral density Figure shows the frequency domain representation of a typical nonperiodic signal. The spectra are continuous. In case of periodic signal that if the duration of time period is increased then the spacing between the spectral components is decreased. If the fundamental period of a periodic signal is increased to infinite, it would become a nonperiodic signal, and in effect, if we take the FT of such signal, the spacing between the spectral components would become infinitesimally small, i.e., continuous.

Time Amplitude (a) (b) Two typical time domain signals, each containing same frequency components. (a): with frequencies and ; (b) with frequencies and but all are cropping up at different time intervals, and. If we take Fourier transforms of these two signals to know the frequency information we shall get identical results.

Frequency Amplitude (a) (b) These two figures are the FT of the first and second signals shown in the previous slide. Although, the two signals are exclusively different but they are not distinguished in their frequency domain plots. Therefore, we go for time-frequency distribution. A time-frequency distribution shows what frequencies are present at a given time. STFT and WT are the mathematical tools used to provide time-frequency distribution.

Time domain function Laplase Trasform (L) Time domain Laplase Inverse Trasform Result Laplace Transform is a useful tool in solving linear, time- invariant differential equations. The technique transforms the original differential equation, which is in time-domain, into the Laplace domain, also called “s” domain. Then it solves the unknowns. Once the job is done, Inverse Laplace Transform is taken in order to give the result. The use of Laplace transformation technique is very popular because some problems are difficult to solve directly. Laplace transform inherits many properties which are of great interest.

Amplitude Constant-amplitude constant-width pulsed signal Time Amplitude An arbitrary signal (Modulating signal) Time Amplitude Time Amplitude Time PAM Signal PWM Signal ON OFF ON OFF ON OFF Pulse modulation includes Pulse Amplitude Modulation (PAM) and Pulse Width Modulation (PWM). PWM draws special attention as far as automation and control is concerned. One such application is to control the speed of DC motors.