CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann.

Slides:



Advertisements
Similar presentations
Cpt S 223 – Advanced Data Structures Graph Algorithms: Introduction
Advertisements

CS 206 Introduction to Computer Science II 04 / 01 / 2009 Instructor: Michael Eckmann.
Graphs COP Graphs  Train Lines Gainesville OcalaDeltona Daytona Melbourne Lakeland Tampa Orlando.
CSE 390B: Graph Algorithms Based on CSE 373 slides by Jessica Miller, Ruth Anderson 1.
Review Binary Search Trees Operations on Binary Search Tree
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Chapter 8, Part I Graph Algorithms.
CS 206 Introduction to Computer Science II 11 / 07 / 2008 Instructor: Michael Eckmann.
Graphs Graphs are the most general data structures we will study in this course. A graph is a more general version of connected nodes than the tree. Both.
Data Structure and Algorithms (BCS 1223) GRAPH. Introduction of Graph A graph G consists of two things: 1.A set V of elements called nodes(or points or.
Graphs By JJ Shepherd. Introduction Graphs are simply trees with looser restrictions – You can have cycles Historically hard to deal with in computers.
Graphs CS3240, L. grewe.
CS 206 Introduction to Computer Science II 11 / 11 / Veterans Day Instructor: Michael Eckmann.
Graph & BFS.
CS 311 Graph Algorithms. Definitions A Graph G = (V, E) where V is a set of vertices and E is a set of edges, An edge is a pair (u,v) where u,v  V. If.
CS 206 Introduction to Computer Science II 10 / 31 / 2008 Happy Halloween!!! Instructor: Michael Eckmann.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
CS 206 Introduction to Computer Science II 11 / 10 / 2008 Instructor: Michael Eckmann.
Graph COMP171 Fall Graph / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D E A C F B Vertex Edge.
Graphs. Graph definitions There are two kinds of graphs: directed graphs (sometimes called digraphs) and undirected graphs Birmingham Rugby London Cambridge.
Graph & BFS Lecture 22 COMP171 Fall Graph & BFS / Slide 2 Graphs * Extremely useful tool in modeling problems * Consist of: n Vertices n Edges D.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
CS 206 Introduction to Computer Science II 11 / 12 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 11 / 03 / 2008 Instructor: Michael Eckmann.
Graphs. Graphs Many interesting situations can be modeled by a graph. Many interesting situations can be modeled by a graph. Ex. Mass transportation system,
CS 206 Introduction to Computer Science II 11 / 05 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 03 / 25 / 2009 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 11 / 09 / 2009 Instructor: Michael Eckmann.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
Graphs & Graph Algorithms Nelson Padua-Perez Bill Pugh Department of Computer Science University of Maryland, College Park.
CS 206 Introduction to Computer Science II 03 / 30 / 2009 Instructor: Michael Eckmann.
C o n f i d e n t i a l HOME NEXT Subject Name: Data Structure Using C Unit Title: Graphs.
Been-Chian Chien, Wei-Pang Yang, and Wen-Yang Lin 6-1 Chapter 6 Graphs Introduction to Data Structure CHAPTER 6 GRAPHS 6.1 The Graph Abstract Data Type.
Computer Science 112 Fundamentals of Programming II Graph Algorithms.
Chapter 9 – Graphs A graph G=(V,E) – vertices and edges
Chapter 2 Graph Algorithms.
 What is a graph? What is a graph?  Directed vs. undirected graphs Directed vs. undirected graphs  Trees vs graphs Trees vs graphs  Terminology: Degree.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
CS 206 Introduction to Computer Science II 11 / 16 / 2009 Instructor: Michael Eckmann.
COSC 2007 Data Structures II Chapter 14 Graphs I.
CISC 235: Topic 9 Introduction to Graphs. CISC 235 Topic 92 Outline Graph Definition Terminology Representations Traversals.
1 Directed Graphs Chapter 8. 2 Objectives You will be able to: Say what a directed graph is. Describe two ways to represent a directed graph: Adjacency.
COSC 2007 Data Structures II
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Graphs Upon completion you will be able to:
Graphs and Paths : Chapter 15 Saurav Karmakar
Chapter 05 Introduction to Graph And Search Algorithms.
CSE 421 Algorithms Richard Anderson Autumn 2015 Lecture 5.
Graph Theory Def: A graph is a set of vertices and edges G={V,E} Ex. V = {a,b,c,d,e} E = {ab,bd,ad,ed,ce,cd} Note: above is a purely mathematical definition.
1 GRAPHS – Definitions A graph G = (V, E) consists of –a set of vertices, V, and –a set of edges, E, where each edge is a pair (v,w) s.t. v,w  V Vertices.
Nattee Niparnan. Graph  A pair G = (V,E)  V = set of vertices (node)  E = set of edges (pairs of vertices)  V = (1,2,3,4,5,6,7)  E = ((1,2),(2,3),(3,5),(1,4),(4,
Brute Force and Exhaustive Search Brute Force and Exhaustive Search Traveling Salesman Problem Knapsack Problem Assignment Problem Selection Sort and Bubble.
Code: BCA302 Data Structures with C Prof. (Dr.) Monalisa Banerjee By.
BCA-II Data Structure Using C Submitted By: Veenu Saini
Data Structures & Algorithm Analysis lec(8):Graph T. Souad alonazi
Data Structures Graphs - Terminology
Graphs Representation, BFS, DFS
CSE 373 Topological Sort Graph Traversals
Csc 2720 Instructor: Zhuojun Duan
Graphs Representation, BFS, DFS
Graphs Chapter 13.
Graphs Chapter 11 Objectives Upon completion you will be able to:
Graphs.
What is a Graph? a b c d e V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d),
Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013
GRAPHS G=<V,E> Adjacent vertices Undirected graph
Chapter 14 Graphs © 2011 Pearson Addison-Wesley. All rights reserved.
INTRODUCTION A graph G=(V,E) consists of a finite non empty set of vertices V , and a finite set of edges E which connect pairs of vertices .
Presentation transcript:

CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann

Michael Eckmann - Skidmore College - CS Spring 2009 Today’s Topics Questions? Comments? Graphs –Definitions –Traversals Breadth First Search Depth First Search Shortest Path algorithms

Graphs Graphs consist of a set of vertices and a set of edges. An edge connects two vertices. Edges can be directed or undirected. Directed graphs' edges are all directed. Undirected graphs' edges are all undirected. Directed graphs are sometimes called digraphs. Two vertices are adjacent if an edge connects them. The degree of a vertex is the number of edges starting at the vertex. Two vertices v1 and v2 are on a path if there are a list of vertices starting at v1 and ending at v2 where each consecutive pair of vertices is adjacent.

Graphs The length of a path is the number of edges in the path. A simple path is one whose edges are all unique. A cycle is a simple path, starting and ending at the same vertex. A vertex is reachable from another vertex if there is a path between them. A graph is connected if all pairs of vertices in the graph have a path between them. Example on the board of a connected and an unconnected graph. A complete graph (aka fully connected graph) is a connected graph where all pairs of vertices in the graph are adjacent. Example on the board.

Graphs Connectivity of a digraph –A digraph is strongly connected if there is a path from any vertex to any other vertex (following the directions of the edges)‏ –A digraph is weakly connected if in its underlying undirected graph, there is a path from any vertex to any other vertex Degree of a vertex in a digraph –In-degree of a vertex is the number of edges entering the vertex –Out-degree of a vertex is the number of edges leaving the vertex

Graphs Edges often have a weight associated with them. An edge's weight is some numeric value. Example on the board of using graphs to represent real world problems –e.g. A weighted graph that connect cities (vertices) and the weights of the edges might be length of time to travel between the two cities. –A graph whose vertices represent buildings on campus and edges are sidewalks connecting the buildings.

Graphs Graphs can be represented in programs in many ways. Two common ways to represent them are: –adjacency matrix --- each row number r represents a vertex and the value at column c is true if there's an edge from vertex r to vertex c, false otherwise Notice that the type stored in the adjacency matrix is boolean Could we use this for weighted graphs? Could we use this for directed graphs? –edge lists store a linked list for each vertex, v i items in the list are those vertices v j for which there's an edge from v i to v j

Graphs Graph traversal –Breadth first search (BFS)‏ Pick a vertex at which to start Visit all of the adjacent vertices to the start vertex Then for each of the adjacent vertices, visit their adjacent vertices And so on until there are no more adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited --- example on the board. –The order that vertices in a BFS are visited are in increasing order of length of path from starting vertex. –Those that have the same path length from the start vertex can be visited in any order. –Example of BFS on the board.

Graphs Implementation of breadth first search –Need a flag for each vertex to mark it as unvisited, waiting, or visited – so we don't visit vertices more than once. –Keep a queue which will hold the vertices to be visited –Keep a list of vertices as they are visited –BFS algorithm: Mark all vertices as unvisited Initially enqueue a vertex into the queue, mark it as waiting While the queue is not empty –Dequeue a vertex from the queue –Put it in the visited list, mark it as visited –Enqueue all the adjacent vertices that are marked as unvisited to the vertex just dequeued. –Mark the vertices just enqueued as waiting

Graphs Let's implement breadth first search (BFS).

Graphs Graph traversal –Depth first search (DFS)‏ Pick a vertex at which to start Visit one of its adjacent vertices then visit one of that one's adjacent vertices, and so on until there is no unvisited adjacent vertex of the one we're working on. Then backtrack one level and visit another adjacent vertex from that one and repeat. Do this until we're at the start vertex and there's no more unvisited adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited –Those vertices that are adjacent to a vertex can be visited in any order. –Example of DFS on the board.

Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –what real world examples might ever want to find the shortest path?

Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –the shortest path could be in terms of path length (number of edges between vertices e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –the shortest path could be in terms of minimum weight for weighted graphs (example on the board.)‏ e.g. finding the lowest cost flights Dijkstra's algorithm solves this problem

Graphs the shortest path could be in terms of path length (number of edges between vertices) e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –Initialize all lengths to infinity –Can process the graph in a BFS starting at the given vertex –When visit a node, replace it's length with the current length. –The BFS uses a queue. –Let's implement this.