Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
0 TDTS41 Computer Networks Lecture 4: Network layer I Claudiu Duma, IISLAB/IDA Linköpings universitet.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Routing & IP Routing Protocols
Routing - II Important concepts: Hierarchical Routing, Intra-domain routing, inter- domain routing, RIP, OSPF, BGP, Router Architecture.
1 Announcement r Project #2 due midnight r Homework #3 due Friday midnight r Project #3 is out.
Routing Algorithms and Routing in the Internet
14 – Inter/Intra-AS Routing
Announcement r Project 2 Extension ? m Previous grade allocation: Projects 40% –Web client/server7% –TCP stack21% –IP routing12% Midterm 20% Final 20%
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 18.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
The Network Layer: IP, subnets, NAT and Routing Based on slides from the Computer Networking: A Top Down Approach Featuring the Internet by Kurose and.
Network Layer – part 31 Customer-Provider Routing Relationships  The Global Internet consists of Autonomous Systems (AS) interconnected with each other:
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
What’s inside a router. Router architecture overview two key router functions:  run routing algorithms/protocol (RIP, OSPF, BGP)  forwarding datagrams.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
Network Layer4-1 Chapter 4 Network Layer Part 3: Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Homework 4 r Out: Fri 2/27/2015 r In: Fri 3/13/2015.
1 Network Layer Lecture 13 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing in the Internet The Global Internet consists of Autonomous Systems (AS) interconnected with eachother: Stub AS: small corporation Multihomed AS:
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
4: Network Layer4a-1 Routing in the Internet r The Global Internet consists of Autonomous Systems (AS) interconnected with each other: m Stub AS: small.
Network Layer4-1 Distance Vector Algorithm Bellman-Ford Equation (dynamic programming) Define d x (y) := cost of least-cost path from x to y Then d x (y)
1 Mao W07 Interdomain Routing Broadcast routing EECS 489 Computer Networks Z. Morley Mao Monday Feb 12, 2007.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 5 TCP/IP Network Layer (3)
Introduction 1 Lecture 19 Network Layer (Routing Algorithms) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
4: Network Layer4b-1 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
Advance Computer Networks Lecture#07 to 08 Instructor: Engr. Muhammad Mateen Yaqoob.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
4: Network Layer4a-1 Distance Vector Routing Algorithm iterative: r continues until no nodes exchange info. r self-terminating: no “signal” to stop asynchronous:
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Routing Protocols 1 ProtocolsLayer name DNSApplication TCP, UDPTransport IPInternet (Network ) WiFi, Ethernet Link (Physical)
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol.
Routing in the Internet
14 – Inter/Intra-AS Routing
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
CS 5565 Network Architecture and Protocols
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
Chapter 4: Network Layer
CS4470 Computer Networking Protocols
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides:
Presentation transcript:

Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University of Wisconsin-Platteville

Network Layer4-2 Chapter 4: Network Layer  4. 1 Introduction  4.2 Virtual circuit and datagram networks  4.3 What’s inside a router  4.4 IP: Internet Protocol  Datagram format  IPv4 addressing  ICMP  IPv6  4.5 Routing algorithms  Link state  Distance Vector  Hierarchical routing  4.6 Routing in the Internet  RIP  OSPF  BGP  4.7 Broadcast and multicast routing

Network Layer4-3 Hierarchical Routing scale: with 200 million destinations:  can’t store all dest’s in routing tables!  routing table exchange would swamp links! administrative autonomy  internet = network of networks  each network admin may want to control routing in its own network Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice

Network Layer4-4 Hierarchical Routing  aggregate routers into regions, “autonomous systems” (AS)  routers in same AS run same routing protocol  “intra-AS” routing protocol  routers in different AS can run different intra- AS routing protocol Gateway router  Direct link to router in another AS

Network Layer4-5 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b Intra-AS Routing algorithm Inter-AS Routing algorithm Forwarding table 3c Interconnected Autonomous Systems  forwarding table configured by both intra- and inter-AS routing algorithm  intra-AS sets entries for internal dests  inter-AS & intra-AS sets entries for external dests

Network Layer4-6 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c Inter-AS tasks  suppose router in AS1 receives datagram destined outside of AS1:  router should forward packet to gateway router, but which one? AS1 must: 1. learn which dests are reachable through AS2, which through AS3 2. propagate this reachability info to all routers in AS1 Job of inter-AS routing!

Network Layer4-7 Example: Setting forwarding table in router 1d  suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2.  inter-AS protocol propagates reachability info to all internal routers.  router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c.  installs forwarding table entry (x,I) 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c x …

Network Layer4-8 Example: Choosing among multiple Autonomous Systems  now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.  to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.  this is also job of inter-AS routing protocol! 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c x … …

Network Layer4-9 Learn from inter-AS protocol that subnet x is reachable via multiple gateways Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Hot potato routing: Choose the gateway that has the smallest least cost Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x,I) in forwarding table Example: Choosing among multiple Autonomous Systems  now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.  to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.  this is also job of inter-AS routing protocol!  hot potato routing: send packet towards closest of two routers.

Network Layer4-10 Chapter 4: Network Layer  4. 1 Introduction  4.2 Virtual circuit and datagram networks  4.4 IP: Internet Protocol  Datagram format  IPv4 addressing  IPv6  4.5 Routing algorithms  Link state  Distance Vector  Hierarchical routing  4.6 Routing in the Internet  RIP  OSPF  BGP  4.7 Broadcast and multicast routing

Network Layer4-11 Intra-AS Routing  also known as Interior Gateway Protocols (IGP)  most common Intra-AS routing protocols:  RIP: Routing Information Protocol  OSPF: Open Shortest Path First  IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Network Layer4-12 Chapter 4: Network Layer  4. 1 Introduction  4.2 Virtual circuit and datagram networks  4.4 IP: Internet Protocol  Datagram format  IPv4 addressing  IPv6  4.5 Routing algorithms  Link state  Distance Vector  Hierarchical routing  4.6 Routing in the Internet  RIP  OSPF  BGP  4.7 Broadcast and multicast routing

Network Layer4-13 RIP ( Routing Information Protocol)  distance vector algorithm  included in BSD-UNIX Distribution in 1982  distance metric: # of hops (max = 15 hops) D C BA u v w x y z destination hops u 1 v 2 w 2 x 3 y 3 z 2 From router A to subnets:

Network Layer4-14 RIP advertisements  distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)  each advertisement: list of up to 25 destinations within AS

Network Layer4-15 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing/Forwarding table in D

Network Layer4-16 RIP: Example Destination Network Next Router Num. of hops to dest. wA2 yB2 zB A7 5 x--1 ….…..... Routing/Forwarding table in D w xy z A C D B Dest Next hops w - 1 x - 1 z C 4 …. …... Advertisement from A to D

Network Layer4-17 RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead  routes via neighbor invalidated  new advertisements sent to neighbors  neighbors in turn send out new advertisements (if tables changed)  poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Network Layer4-18 RIP Table processing  RIP routing tables managed by application-level process called route-d (daemon)  advertisements sent in UDP packets, periodically repeated physical link network (IP) Transprt (UDP) routed physical link network (IP) Transprt (UDP) routed forwarding table forwarding table

Network Layer4-19 Chapter 4: Network Layer  4. 1 Introduction  4.2 Virtual circuit and datagram networks  4.4 IP: Internet Protocol  Datagram format  IPv4 addressing  IPv6  4.5 Routing algorithms  Link state  Distance Vector  Hierarchical routing  4.6 Routing in the Internet  RIP  OSPF  BGP  4.7 Broadcast and multicast routing

Network Layer4-20 OSPF (Open Shortest Path First)  “open”: publicly available  uses Link State algorithm  LS packet dissemination  topology map at each node  route computation using Dijkstra’s algorithm  OSPF advertisement carries one entry per neighbor router  advertisements disseminated to entire AS (via flooding)  carried in OSPF messages directly over IP (rather than TCP or UDP

Network Layer4-21 OSPF “advanced” features (not in RIP)  security: all OSPF messages authenticated (to prevent malicious intrusion)  multiple same-cost paths allowed (only one path in RIP)  For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time)