Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department.

Slides:



Advertisements
Similar presentations
Magnets, Metals and Superconductors Tutorial 2 Dr. Abbie Mclaughlin G24a.
Advertisements

Ch 10 Lecture 3 Angular Overlap
Mixed-valence vanadates at high-pressures Andrzej Grzechnik Institute of Crystallography, RWTH Aachen University.
1 Comparing magnetic SrMO 3 perovskites M= 3d vs. 4d Leo Lamontagne MTRL 286G 6/2/2014.
Magnetismo y Superconductividad: Principios fundamentales, sistemas experimentales y líneas de investigación en el laboratorio de bajas temperaturas Luis.
Neutron and X-ray Scattering Studies of Spin, Charge and Orbital Order in TM Oxides Andrew Boothroyd Department of Physics, Oxford University magnetization.
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 George Sawatzky.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Perovskite-type transition metal oxide interfaces
Coordination Chemistry II
Types of Ferroelectric Materials
The Double Pervoskite NaTbMnWO 6 : A Likely Multiferroic Material † Alison Pawlicki, ‡ A. S. Sefat, ‡ David Mandrus † Florida State University, ‡ Oak Ridge.
Experimental Techniques Magnetization Specific heat Resistivity Low temperatures Small samples (~1 mg) High magnetic fields.
V. Pomjakushin I.M.Frank Laboratory of Neutron Physics, JINR, Dubna In collaboration with: A. Balagurov Frank Laboratory of Neutron Physics, JINR, Dubna.
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Effect of iron doping on electrical, electronic and magnetic properties of La 0.7 Sr 0.3 MnO 3 S. I. Patil Department of Physics, University of Pune March.
Theory of Orbital-Ordering in LaGa 1-x Mn x O 3 Jason Farrell Supervisor: Professor Gillian Gehring 1. Introduction LaGa x Mn 1-x O 3 is an example of.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.
Big-picture perspective: The interactions of the d orbitals with their surrounding chemical environment (ligands) influences their energy levels, and this.
Coordination Chemistry:
Magnetic transition in the Kondo lattice system CeRhSn2
Coordination Chemistry II
Magnetism and Magnetic Materials
Chemistry Solid State Chemistry Transition Metal Oxide Rock Salt and Rutile: Metal-Metal Bonding Chemistry 754 Solid State Chemistry Lecture 23 May.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
An Introduction to Fe-based superconductors
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Phase diagram of solid oxygen at low temperature and high pressure
Intraatomic vs Interatomic Interactions John B. Goodenough (University of Texas at Austin) DMR Intellectual Merit Localized electrons have stronger.
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
The Structure and Dynamics of Solids
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
W. M. Reiff a, M. Feist b, and E. Kemnitz b a Department of Chemistry, Northeastern University, Boston MA, 02115, USA; b Institut.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Applications of Spin-Polarized Photoemission P. D. Johnson, Annual Rev. Mater. Sci. 25 (1995) Combined spin –integrated/resolved detector: Giringhelli,
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Sub-Topics Introduction to Transition Metals
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Orbital Ordering and Exchange Interactions in RMnO 3 Perovskites J. B. Goodenough, U.T. Austin DMR
Transition Metal Oxide Perovskites: Band Structure, Electrical and Magnetic Properties Chemistry 754 Solid State Chemistry Lecture 22 May 20, 2002.
Figure 2: raw absorption spectra for all the samples: EXAFS region. In red is the Fourier filtered nearest neighbour signals. XANES features reflects the.
The Periodic Table History Structure Trends. Part I: Attempts at Classification.
Evolution of the orbital Peierls state with doping
Coordination Chemistry: Bonding Theories
Applications of Crystal Field Theory: Ionic Radii
Universidad Complutense de Madrid, Departamento Física Aplicada III
Hyperfine interaction studies in Manganites
Crystal Structure Refinement of Fluorine-Free LnFeAsO1-y by Neutron Diffraction AIST, Japan C. H. Lee, A. Iyo, H. Eisaki, H. Kito, T. Ito, K. Kihou, H.
THE BIGGER PICTURE - TRENDS IN REAL SYSTEMS
NICPB, Tallinn, Estonia: R. Stern I. Heinmaa A. Kriisa E. Joon
Invisible Ink 2[Co(H2O)6]Cl2(s) Co[CoCl4](s) + 12 H2O
Hydration and structural properties of mixed conductor Ba1‑xGd0. 8La0
Presentation transcript:

Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department of Chemistry University of Oslo

Charge, Orbital and Spin Ordering Charge Ordering (T CO ) –T > T CO  Delocalized Electrons  Single oxidation state –T < T CO  Localized Electrons  Distinct oxidation states Orbital Ordering (T OO ) –Preferential (anisotropic) occupation of given d-orbitals –Cooperative Jahn-Teller distortion Spin Ordering (T N or T C ) –Long range magnetic ordering Mixed Valency (Robin & Day Classification) –Type III  Metallic e - transport  Single oxidation state –Type II  Activated e - transport  Two oxidation states at a given instant, but CO pattern is fluctional –Type I  Insulating  Two oxidation states, with a regular (long range) CO pattern

Ba 2 (Bi 4+ ) 2 O 6  Ba 2 (Bi 3+ Bi 5+ )O 6 Cox & Sleight (1976) High T c Superconductivity in Oxides Fe 3+ (Fe 2.5+ ) 2 O 4  Fe 3+ (Fe 2+ Fe 3+ )O 4 Verwey (1939) Double Exchange Ferromagnetism LaCa(Mn 3.5+ ) 2 O 6  LaCa(Mn 3+ Mn 4+ )O 6 Wollan, Koehler & Goodenough (1955) Colossal Magnetoresistance (CMR) Examples of Charge Ordering

Charge Ordering in Nd 0.5 Sr 0.5 MnO 3 T = 160 K Valence Mixed State T = 60 K Charge Ordered State Synchrotron X-ray Powder Diffraction Data (NSLS-X7A) A series of weak superstructure reflections arise (1% intensity at the strongest) that indicate doubling of the a -axis. Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, (1999).

Examples of Orbital Ordering 2  2.18 Å 2  1.91 Å 2  1.94 Å 2  2.07 Å LaMnO 3 (298 K) Rodriguez-Carvajal, et al. Phys. Rev. B 57, R3189 (1998). NdSrMn 2 O 6 (50 K) Woodward, et al. Chem. Mater. 11, (1999). Mn 3+ Mn 4+ 4  1.90 Å

Orbital Ordering & Cooperative Jahn-Teller Distortions d(x 2 -y 2 ) d(z 2 ) Mn 3+ e g (  *) t 2g (  *) Regular Octahedron Axially Elongated Octahedron

Examples of Orbital Ordering 2  2.18 Å 2  1.91 Å 2  1.94 Å 2  2.07 Å LaMnO 3 (298 K) Rodriguez-Carvajal, et al. Phys. Rev. B 57, R3189 (1998). NdSrMn 2 O 6 (50 K) Woodward, et al. Chem. Mater. 11, (1999). Mn 3+ Mn 4+ 4  1.90 Å

Orbital Ordering in Nd 0.5 Sr 0.5 MnO 3 Upon cooling below 150 K, the a & c-axes expand and the b-axis contracts. This is the signature of orbital ordering Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, (1999).

Oxygen Deficient Double Perovskites RBaFe 2 O 5+w R = Trivalent Rare Earth Ion –Nd, Sm, Tb, Ho, Y –Changing the radius of the R ion, controls the layer spacing M = 1 st row Transition Metal Ion –V, Mn, Fe, Co, Cu –Changing M, alters the electron count and covalency of the M-O bonds. 0  w  ~ 0.7 –Excess oxygen resides in R layer –The upper limit of w is dictated by the ionic radius of R –w=0  M +2.5, w=0.5  M +3 –changes the local coordination of the transition metal ion from 5 to 6

Synthesis REBaFe 2 O 5 The sample is dehydrated at ~180 °C. The sample is then heated at ~400 °C to drive off the organic content and produce an amorphous precursor. The precursor is calcined ( °C) and then sintered at high temperature ( °C) in a carefully controlled pO 2 atmosphere. The sintered pellets are heated at a lower temperature ( °C) in a controlled atmosphere to attain the desired oxygen content. RE 2 O 3 + Citric Acid Fe 2 O 3 + Nitric Acid BaCO 3 Amorphous Organic- Inorganic Precursor Heat & Stir

Powder Diffraction Data Collection Synchrotron X-ray Powder Diffraction –NSLS - X7A (Dave Cox, Tom Vogt) –NSLS – X3B (Peter Stephens, Sylvina Pagola) –ESRF – BM1B (Swiss-Norwegian Beamline) Neutron Powder Diffraction –NIST – BT1 (Brian Toby) - YBaFe 2 O 5 –ILL – D2B (Emmanuel Suard) - HoBaFe 2 O 5 & NdBaFe 2 O 5 –PSI - HRPT (Peter Fischer) - TbBaFe 2 O 5 –ANSTO – MRPD (Andrew Studer) - TbBaFe 2 O 5 Neutron Thermodiffractometry –ILL – D20 (Emmanuel Suard) - HoBaFe 2 O 5 & NdBaFe 2 O 5 Mossbauer Spectroscopy –Abo Akademi (Johan Linden)

DSC Electrical Resistivity T>T PM Mössbauer shows one Fe 2.5+ signal (Type III MV) T PM >T>T CO Mössbauer signal begins to split Fe 2.5+x + Fe 2.5-x (Type II MV) T CO > T Mössbauer shows Fe 2+ + Fe 3+ (Type I MV, Charge Ordered State) IIIIII T CO T pm Karen, Woodward, Santhosh, Vogt, Stephens, Pagola, J. Solid State Chem. 167, 480 (2002).

TbBaFe 2 O 5 Type III MV Structure Temperature 350 K Space Group Pmmm a (4) Å b (4) Å c (8) Å Bond Valences Ba 1.98 Tb 2.88 Fe 2.52 O(x) 1.94 O(y) 1.95 O(z) 2.05 Fe-O Distances 2  (6) [O y ] 2  (5) [O x ] 1  (7) [O z ] Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

TbBaFe 2 O 5 Synchrotron X-ray Superstructure Reflections indicate a doubled a-axis Space Group = Pmma Superstructure reflections are stronger when R = Nd Superstructure reflections are very difficult to observe in neutron powder patterns. Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

TbBaFe 2 O 5 Neutron Diffraction Rietveld refinements of neutron powder diffraction data confirm charge ordered structure, TbBaFe 3+ Fe 2+ O 5. Mixed Valence Model Charge Ordered Model Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, (2001).

TbBaFe 2 O 5 Type I CO Structure 2.134(4)Å 2.046(5)Å 1.965(4)Å Fe 2+ BVS=2.37 x 2 -y 2 z2z2 xy yz xz x 2 -y 2 z2z2 xz xy yz 2.134(4)Å 1.965(4)Å 1.975(1)Å 1.895(6)Å Fe 3+ BVS=2.76 Temperature 70 K Space Group Pmma a8.0575(2) Å b (6) Å c7.5526(2) Å 1.962(1)Å

TbBaFe 2 O 5 Magnetic Scattering T > T co Magnetic Cell 2a  2b  2c 7.88Å  7.87Å  15.17Å T < T co Magnetic Cell 2a  2b  c 8.05Å  7.70Å  7.55Å The charge ordering induces a rearrangement of the antiferromagnetic structure!

TbBaFe 2 O 5 MV State (T>T CO ) Magnetic Structure AFM Coupling in ab Plane Isostructural with YBaFeCuO 5 Fe-O-Fe Superexchange AFM Fe-Fe Direct Exchange FM FM AFM AFM

TbBaFe 2 O 5 CO State (T<T CO ) Magnetic Structure AFM Coupling in ab Plane G-Type AFM Structure Fe-O-Fe Superexchange AFM Fe-Fe Direct Exchange AFM AFM AFM AFM

Charge & Spin Ordering in YBaM 2 O 5 YBaMn 2 O 5 T CO > 300 K (CB) P4/nmm T C = 165 K (Ferri) Millange, et al. Mater. Res. Bull. 1999, 34, 1. YBaFe 2 O 5 T CO > 308 K (ST) Pmma T N = 430, 308 K Woodward, Karen Inorg. Chem. 2003, 42, YBaCo 2 O 5 T CO > 220 K (ST) Pmma T N = 330 K Vogt, et al. PRL 2003, 84, 2969.

Orbital Ordering in YBaM 2 O 5 YBaMn 2 O 5 P4/nmm xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Mn 3+ Mn 2+ YBaFe 2 O 5 Pmma xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Fe 3+ Fe 2+ YBaMn 2 O 5 Pmma xzyz xy z2z2 x 2 -y 2 xzyz xy z2z2 x 2 -y 2 Co 3+ Co 2+

Phase Transitions – RBaFe 2 O 5 Paramagnetic to Antiferromagnetic ( K) –YBaFeCuO 5 Type AFM Order –Small Magnetostrictive coupling leads to a subtle Tetragonal to Orthorhombic Distortion Premonitory Charge Ordering ( K) –Subtle charge localization can be seen in DSC & Mossbauer, but not in diffraction measurements –Mixed valency changes from Type I to Type II Long Range Charge Ordering ( K) –Induces a large orbital ordering transition –Orbital ordering stabilizes a stripe CO pattern –Stabilizes G-type Antiferromagnetic order (changes the sign of the Fe-Fe direct exchange)

Changing the size of the RE ion modifies the Fe-Fe distance. Fe-Fe Dist.Ave. Fe-O Dist. Fe-O-Fe  Ho Y Tb Sm Nd Ho Y Tb SmNd Ho Y Tb Sm Nd Structural Evolution: REBaFe 2 O 5

Phase Transitions vs. R size T CO As the radius of the R ion increases –T CO (MV II  MV I) decreases significantly. –T PM (MV III  MV II) decreases more gradually. –T N1 changes very little. Type III Mixed Valent Type I Charge Ordered Type II

Volume Change at T CO Volume change at T CO (MV II  MV I) PmmaP2 1 ma

Thermodiffractometry (ILL-D20) Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). Pmma Pmmm HoBaFe 2 O /02 0 T(K) G G G NdBaFe 2 O 5 P2 1 ma Pmmm / theta M M MM T(K)

HoBaFe 2 O 5 Unit Cell Evolution 1 K Temperature grid, 1 min collection time No noticeable change at T PM Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). P4/mmm to Pmmm at T N

Woodward, Karen, Suard, J. Amer. Chem. Soc. 125, 8889 (2003). NdBaFe 2 O 5 Unit Cell Evolution 1 K Temperature grid, 1 min collection time

Orbital Ordering (RE = Nd, Ho) Orthorhombic distortion saturates at T pm for NdBaFe 2 O 5. Similar behavior is not observed for HoBaFe 2 O 5 Orthorhombic distortion increase at T CO is much larger in HoBaFe 2 O 5.

RBaFe 2 O 5 (R=Tb, Y, Ho) YBaFeCuO 5 AFM Structure Fe-Fe Coupling T CO G-Type AFM Structure Fe-Fe Coupling Antiferromagnetic NdBaFe 2 O 5 YBaFeCuO 5 AFM Structure Fe-Fe Coupling T CO YBaFeCuO 5 AFM Structure Fe-Fe Coupling Ferromagnetic Magnetism vs. Temperature T CO

Nd Magnetism in NdBaFe 2 O 5 Nd moment is ~1.2  B at 2 K, T N (Nd) ~ 30 K No rare-earth magnetic order for R = Ho. Nd magnetism is induced by Fe magnetism.

Structural Tuning in RBaFe 2 O 5 As the radius of the R ion increases (R = Ho-Sm) –The spacing across the R-layer increases –T CO decreases significantly, T PM decreases more gradually –T N1 changes very little –Patterns of charge, orbital and spin order remain constant NdBaFe 2 O 5 The large size of Nd has several effects –Disrupts the ideal pattern of orbital ordering The CO structure has P2 1 ma symmetry rather than Pmma The volume change at T CO is anomalous The orthorhombic distortion parameter saturates at T PM –Decouples the magnetic and charge order There is no rearrangement of the magnetic structure at T CO –Destabilizes the long range charge order T CO is much lower than other members of the series