Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, 064422(2011) Phy.Rev.

Slides:



Advertisements
Similar presentations
Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
Advertisements

The ultimate nonlinear optical process in the semiconductor by phase controlled several cycle AC electromagnetic pulse M1 HIROKI OKADA ASHIDA LAB.
Junghoon Kim and Jung Hoon Han Department of Physics Sungkyunkwan University.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Three-Dimensional Optical Control of Individual Quantum Dots Liselotte Jauffred, Andrew C. Richardson, and Lene B. Oddershede Nano Lett. 2008, 10,
Ashida lab. Onishi Yohei
TeraHertz Kerr effect in GaP crystal
Spintronics = Spin + Electronics
Carrier Wave Rabi Flopping (CWRF) Presentation by Nathan Hart Conditions for CWRF: 1.There must exist a one photon resonance with the ground state 2.The.
音の変化を視覚化する サウンドプレイヤーの作成
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Controlling the thickness of CuCl thin films and improving their quality by means of MBE method Ashida lab. M1 Kamizono Kenta.
Ultrabroadband terahertz generation using DAST single crystal
Photo-excited carrier dynamics revealed with terahertz pump-probe spectroscopy for opposite travelling direction of excitation pulse and terahertz pulse.
Optical fabrication and Optical manipulation of semiconductor nanoparticles Ashida lab. Nawaki Yohei.
K L University By G.SUNITA DEPARTMENT OF PHYSICS.
Terahertz spectroscopy of electromagnons in Multiferroics
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
RamanRaman. Scattering Tyndall scattering – if small particles are present During Rayleigh scattering (interaction of light with relatively small molecules)
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
M.Hangyo,M.Tani,and T.Nagashima TERAHERTZ TIME-DOMAIN SPECTROSCOPY OF SOLIDS: A REVIEW International Journal of Infrared and Millimeter Waves,Vol. 26,
1 Acoustic ↔ Electromagnetic Conversion in THz Range Alex Maznev Nelson group meeting 04/01/2010.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Nonlinear Optical Spectroscopy in Multiferroics Speaker: Zuanming Jin.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Generation and detection of ultrabroadband terahertz radiation
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Itoh Lab. M1 Masataka YASUDA
Maxwell’s microscopic equations (gaussian units): Classical theory: Quantum theory:
PRISM-II and Measurement of Muon Electric Dipole Moment based on J-PARC mu-edm LoI NuFACT-J'03 M. Aoki Osaka University.
Fourier-transform coherent anti-Stokes Raman scattering microscopy Jennifer P. Ogilvie et al. Opt. Lett. 31, 480 (2006) Kazuya MORI MIYASAKA Lab.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Terahertz Applications by THz Time Domain Spectroscopy
Coherent transients from carbonyl sulfide excited by terahertz radiation D.Bigourd, A.Cuisset, G. Mouret, S. Matton, F. Hindle, E. Fertein , R. Bocquet.
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
C. Doubrovsky1, F. Bouquet1, C. Pasquier1, P. Senzier1
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
István Kézsmárki Budapest University of Technology Giant Directional Optical Anisotropies in the THz regime Spinwave Excitations in Multiferroics Collegues.
Superconducting properties in filled-skutterudite PrOs4Sb12
A class of localized solutions of the linear and nonlinear wave equations D. A. Georgieva, L. M. Kovachev Fourth Conference AMITaNS June , 2012,
1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 ) [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?”
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Introduction to materials physics #4
Tokyo Institute of Technology Hiroyuki Kawasaki, Asao Mizoguchi, Hideto Kanamori High Resolution Infrared Spectroscopy of CH 3 F-(ortho-H 2 ) n cluster.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Introduction to Laser Spectroscopic Techniques for Condensed Matter.
Multiphoton-gated cycloreversion reaction of a photochromic diarylethene derivative as revealed by femtosecond two-color and two-pulse excitation Miyasaka.
Ashida Laboratory Keita Miyagawa 1 Carrier dynamics evaluation in the photoelectric device from the terahertz electromagnetic wave.
Polarization Dependence in X-ray Spectroscopy and Scattering
(Instrument part) Thanundon Kongnok M
Image © NPG Rogério de Sousa
Investigation of laser energy absorption by ablation plasmas
Electro Optic Sampling of Ultrashort Mid-IR/THz Pulses
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Pump and probe technique
THz pulse-pump optical reflectivity probe spectroscopy on Nd2CuO4
Presentation transcript:

Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev. B 80, (R) (2009)

Contents Introduction Polarization and magnetization Multiferroics Electromagnon Method THzTDS Results Conclusion

Polarization and Magnetization P - - Polarization Magnetization E H M Ferroelectric and Ferromagnetic M=0 Application for memory devices Introduction 分極 強誘電性と強磁性 磁化

Multiferroics E H P M Multiferroics are materials where ferroelectricity and ferromagnetism are inherently coupled. The magnetization can be controlled by electric field of light. The polarization can be controlled by magnetic field. Introduction

Magnetoelectric effect (ME effect) In 2003,RMnO 3 (R; rare earth element) Polar lattice distortion Induce Polarization P total //c Spiral-spin-order a b c Antisymmetry Dzyaloshinskii-Moriya interaction Introduction 空間格子の反転対称性の歪み らせんスピン磁性 bc-spiral

Electromagnon Magnon can be excited by electric field of light. Magnon Introduction Spin wave Magnon is exited by magnetic field of light. Multiferroics Electromagnon (2006)

Theory of electromagnon Introduction P total //c a b c E ω //a E Mn O Symmetric exchange interaction ME effect

Hexagonal ferrite Ba 2 Mg 2 Fe 12 O 22 Ferri magneticproper screw Conical spin Room temperature T<195KT<50K Introduction 六方晶フェライト By neutron diffraction

Transition of spin phase by magnetic field H//[001] Longitudinal conical spin H(>3T) H//[100] Transverse conical spin H( > 4T) Introduction FerrimagneticProper screw Ferrimagnetic θ (001) (100) (120)

THz-TDS enables us to observe a waveform of ”E(t)” directly. By using THz-TDS, both amplitude and phase of ”E(t)” are directly obtained. Pump beam Delay stage Probe beam THz-TDS fs pulse laser THz emitter THz detector sample Terahertz time-domain spectroscopy (THz-TDS) Method

Longitudinal conical form Results Conical Proper-screw Ferri ConicalFerri Proper F C F C F

Transverse conical form Results Conical Proper Ferri Proper-screwConical Ferri F C C F F

Conclusion ・ The electromagnon appears only in the conical spin ordered phase but irrespective of the longitudinal or the transverse conical form.No electromagnon is observed in the properscrew or ferrimagnetic phase. ・ The symmetric exchange interaction (S i ・ S j ) is dominant source of the observed electromagnon. at room temperature Electromagnon Conclusion Noncolinear spin structure at room temperature

Purpose ・ To investigate the situation where electromagnon induced by changing temperature and external magnetic field ・ How the intensity of the absorption by electromagnon depend on the external magnetic field? Is it possible to induce electromagnon at room temperature?

Decide optical coefficient d Sample Fourier transformed spectrum Transmission Fresnel constants

Experimental set up

Emergency of electromagnon depend on the direction of electric field at conical spin phase(4.3K) depend on the external magnetic field (H//[001],4.3K) Phy.Rev. B 80, (R) (2009) Absorption by electromagnon is obserbed around 2.8meV(0.7THz). Results

Y-type

Spiral spin structure 反時計回り 時計回り 反転対称性が崩れる 格子歪みによる分極発生

Electromagnon ……….. H Magnon Energy at THz region (0.1THz-10THz) 0.41meV-41meV ・ observed at THz region ・ depends on the direction of electric field ・ The intensity of absorption depend on the external magnetic field. [001] [100] [120] L S

RMnO3 electromagnon