Weak Lensing Tomography Sarah Bridle University College London
3d vs 2d (tomography) Non-Gaussian -> higher order statistics Low redshift -> dark energy versus
Weak Lensing Tomography 1.In principle (perfect zs) Hu 1999 astro-ph/ Photometric redshifts Csabai et al. astro-ph/ Effect of photometric redshift uncertainties Ma, Hu & Huterer astro-ph/ Intrinsic alignments 5.Shear calibration
1. In principle (perfect zs) Qualitative overview Lensing efficiency and power spectrum –Dependence on cosmology Power spectrum uncertainties Cosmological parameter constraints
1. In principle (perfect zs) Core reference Hu 1999 astro-ph/ See also Refregier et al astro-ph/ Takada & Jain astro-ph/
Cosmic shear two point tomography
(Hu 1999)
Lensing efficiency (Hu 1999) Equivalently: g i (z l ) = ∫ z l n i (z s ) D l D ls / D s dz s i.e. g is just the weighted D l D ls / D s
Can you sketch g 1 (z) and g 2 (z)? (Hu 1999) g i (z) = ∫ z s n i (z s ) D l D ls / D s dz s
Lensing efficiency for source plane?
(Hu 1999)
Sensitivity in each z bin
NOT
(Hu 1999) Why is g for bin 2 higher? A. More structure along line of sight B. Distances are larger g i (z d ) = ∫ z s 1 n i (z s ) D d D ds / D s dz s
* *
Lensing power spectrum (Hu 1999)
Lensing power spectrum Equivalently: P ii (l) = ∫ g i (z l ) 2 P(l/D l,z) dD l /D l 2 i.e. matter power spectrum at each z, weighted by square of lensing efficiency (Hu 1999)
Measurement uncertainties 1/2 = rms shear (intrinsic + photon noise) n i = number of galaxies per steradian in bin i (Hu 1999) Cosmic Variance Observational noise
(Hu 1999)
Sensitivity in each z bin
NOT
(Hu 1999)
Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al
Effect of increasing w on P Distance to z –A. Decreases B. Increases
Perlmutter et al.1998 Fainter Further away Decelerating Accelerating m =1, no DE m =1, DE =0) == ( m = 0.3, DE = 0.7, w DE =0)
Perlmutter et al.1998 EdS OR w=0 w=-1 Fainter, further Brighter, closer
Effect of increasing w on P Distance to z –A. Decreases B. Increases –When decrease distance, lensing effect decreases Dark energy dominates –A. Earlier B. Later
Effect of increasing w on P Distance to z –A. Decreases B. Increases –When decrease distance, lensing decreases Dark energy dominates –A. Earlier B. Later Growth of structure –A. Suppressed B. Increased –Lensing A. Increases B. Decreases Net effects: –Partial cancellation decreased sensitivity –Distance wins
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al
Approximate dependence Increase 8 → A. P ↓ B. P ↑ Increase z s → A. P ↓ B. P ↑ Increase m → A. P ↓ B. P ↑ Increase DE ( K =0) → A. P ↓ B. P ↑ Increase w → A. P ↓ B. P ↑ Huterer et al Note modulus
Which is more important? Distance or growth? Simpson & Bridle
Dependence on cosmology Refregier et al SNAP3 ?? A. m = 0.35 w=-1 B. m = 0.30 w=-0.7
(Hu 1999)
See Heavens astro-ph/ for full 3D treatment (~infinite # bins)
(Hu 1999)
Parameter estimation for z~2 (Hu 1999)
Predict the direction of degeneracy in w versus m plane
Refregier et al SNAP3
(Hu 1999)
Takada & Jain
(Hu 1999)
Covariance matrix P 12 is correlated with P 11 and P 22 (ignoring trispectrum contributions) Takada & Jain
How many redshift bins to use? Ma, Hu & Huterer 5 is enough Modified from
Higher order statistics
Takada & Jain
Geometric information Jain & Taylor; Kitching et al. Slide stolen from Tom Kitching
Slide stolen from presentation by Andy Taylor
Slide stolen from presentation by Andy Taylor
Slide stolen from presentation by Andy Taylor
Slide stolen from presentation by Andy Taylor
Some additional tomographic methods Cross-correlation cosmography –Bernstein & Jain astro-ph/ Galaxy-lensing cross correlation –Hu & Jain astro-ph/ Reconstruction of distance and growth –Song; Knox & Song