Model independent determination of quadrupole deformation parameters from Coulomb excitation measurements XVII th Nuclear Physics Workshop, Kazimierz Dolny.

Slides:



Advertisements
Similar presentations
Lifetime measurements in 128 Cs and 132 La as a test of chirality Kazimierz Dolny September 2005 Julian Srebrny Nuclear Physics Division Institute of Experimental.
Advertisements

The role of the isovector monopole state in Coulomb mixing. N.Auerbach TAU and MSU.
CoulEx. W. Udo Schröder, 2012 Shell Models 2 Systematic Changes in Nuclear Shapes Møller, Nix, Myers, Swiatecki, Report LBL 1993: Calculations fit to.
Some (more) Nuclear Structure
SYNTHESIS OF SUPER HEAVY ELEMENTS
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Clustering in 12Be: Determination of the Enhanced monopole strength
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Shape coexistence in exotic nuclei studied by low energy coulomb excitation Emmanuel Clément CERN-PH, Geneva.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
Coulomb excitation with radioactive ion beams
University of Liverpool
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Electromagnetic Properties of
Pavel Stránský 29 th August 2011 W HAT DRIVES NUCLEI TO BE PROLATE? Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Alejandro.
The Collective Model Aard Keimpema.
High spin states in 136,137 La, 148 Ce and 105 Mo.
Structure of strange baryons Alfons Buchmann University of Tuebingen 1.Introduction 2.SU(6) spin-flavor symmetry 3.Observables 4.Results 5.Summary Hyperon.
W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Nuclear Low-lying Spectrum and Quantum Phase Transition Zhipan Li School of Physical Science and Technology Southwest University 17th Nuclear Physics Workshop,
Vibrational and Rotational Spectroscopy
EWON Workshop, Prague, May 2007 GOSIA as a tool for COULEX on exotic beams Katarzyna Wrzosek Heavy Ion Laboratory Warsaw University.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, (2005); PRC 76, (2007); PRC 78, (2008); PRC 79,
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
FermiGasy. W. Udo Schröder, 2005 Angular Momentum Coupling 2 Addition of Angular Momenta    
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Nuclear deformation in deep inelastic collisions of U + U.
How do nuclei rotate? 1. The molecular picture.
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
Experimental measurement of the deformation through the electromagnetic probe Shape coexistence in exotic Kr isotopes. Shape coexistence in exotic Kr isotopes.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
How do nuclei rotate? The nucleus rotates as a whole.
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
WHY ARE NUCLEI PROLATE:
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
Algebraic collective model and its applications Gabriela Thiamová Laboratoire de Physique Subatomique et de Cosmologie Institut National Polytechnique.
E.Clément Novembre 2011 E.Clément-GANIL Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE,
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Chiral Symmetry Symposium Beijing 2013 Uniwersytet Warszawski Phase transition into spontaneous chiral symmetry breaking Ernest Grodner The Seventh Symposium.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
Extracting β4 from sub-barrier backward quasielastic scattering
Shape parameterization
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
20/30.
Structure and dynamics from the time-dependent Hartree-Fock model
PHL424: Nuclear rotation.
Emmanuel Clément IN2P3/GANIL – Caen France
Maria Kmiecik, Giovanna Benzoni, Daisuke Suzuki
Nuclear Chemistry CHEM 396 Chapter 4, Part B Dr. Ahmad Hamaed
Feeding of low-energy structures with different deformations by the GDR decay: the nuBall array coupled to PARIS M. Kmiecik, A. Maj, B. Fornal, P. Bednarczyk.
High spin physics- achievements and perspectives
Rotational Spectroscopy
20/30.
How do nuclei rotate? 1. The molecular picture.
Presentation transcript:

Model independent determination of quadrupole deformation parameters from Coulomb excitation measurements XVII th Nuclear Physics Workshop, Kazimierz Dolny 2010, September 25 th ** Symmetry and symmetry breaking in nuclear physics ** Julian Srebrny( Heavy Ion Laboratory, University of Warsaw)

OUTLINE Introduction: K. Kumar-idea, D. Cline – the method development and realisation Formulae derivation, expectation value of quadrupole deformation Q and triaxiality cos3δ How does it really work Ru example. Nothing is easy : vibrational energy but shapes? Typical stiff axially symmetric rotor 168 Er Transitional nuclei and important role of triaxiality Os and 194 Pt Low lying 0 + states Ge and Mo Higher order invariants - degree of stiffness or softness in Q or cos3δ SUMMARY: The information about charge deformation. The quality of collective quadrupole model descriptions. Nuclear microscope –T. Czosnyka.

A result of Coulomb excitation experiment is the set of electromagnetic matrix elements. It can be 20 ÷ 60 ME for stable beam experiments. mainly E2 collective transitional and diagonal matrix elements: B(E2; i f ) spectroscopic quadrupole moment very often signs can be determined, not only absolute values Comparing the list of experimental E2 matrix elements with model values exhibits neither the uniqueness nor the sensitivity of the data to the collective model parameters. Quadrupole collectivity produces strong correlations of the E2 matrix elements and the number of significant collective variables is much lower than the number of matrix elements. The information about charge deformation parameters can be obtained using rotationally invariant products of the quadrupole operators that relate the reduced E2 matrix elements with the quadrupole deformation parameters K. Kumar, Phys. Rev. Lett. 28 (1972) 249. D. Cline, Annu. Rev. Nucl. Part. Sci. 36 (1986) 683.

The two basic quadrupole invariants are formed of the quadrupole operator tensor M (E2) in the following way - where [··· × ···]L stands for the vector coupling to angular momentum L. - invariants are denoted here up to coefficients as Q 2 and Q 3 cos 3δ, in order to have a correspondence with collective coordinates, is an overall quadrupole deformation parameter is a triaxiality parameter - since the components of M (E2,µ) with different µs commute with each other the expectation values of the E2 invariants can be related to the reduced E2 matrix elements by making intermediate state expansions: Σ I R > < R I = 1

since the components of M (E2,µ) with different µs commute with each other the expectation values of the E2 invariants can be related to the reduced matrix elements by making intermediate state expansions: - S denotes state S and at the same time the spin of state S alone; R and T denotes intermediate states and their spins; - having the experimental values of the reduced E2 matrix elements, the expectation values of the basic quadrupole invariants and for a given state S can be extracted from the experimental data.

Nuclear Physics A 766 (2006) 25–51 J. Srebrny, T. Czosnyka, Ch. Droste, S.G. Rohozinski,L. Próchniak, K. Zajac, K. Pomorski, D. Cline, C.Y. Wu, A. Bäcklin, L. Hasselgren, R.M. Diamond, D. Habs, H.J. Körner, F.S. Stephens, C. Baktash, R.P. Kostecki 4 phonon multiplet 3 phonon 2 phonon 1 phonon

β similar behaviour Pd, 128 Xe only 114 Cd looks like real vibrator approximation: = 3/2

168 Er the centre of the rare earth region rigid axially symmetric rotor E(2 + ) = 80 keV β 0.33, 9° similar results for 182,184 W and Hf

prolate – oblate transitional nuclei Z= 76( Os), 78(Pt)

B o g u m i ł a B a s a j triaxial rotor, stable quadrupole deformation and triaxiality – δ 20°

Maximal triaxiality: close to 30°

by adding 2 protons ( 192 Os – 194 Pt) deformation has jumped from prolate to oblate

prolate – oblate transitional nuclei Z= 76( Os), 78(Pt)

very low second 0 +, close to first Ge: 0 + (691 keV), 2 + (834 keV) in Ge: ground state - deformed and triaxial excited state - spherical in Mo: complicated picture, see review talk of Katarzyna Wrzosek

The new generation of RIA: few order increase of intensity will allow on comprehensive study of many new nuclei The only results from radioactive beam experiments( SPIRAL): 74,76 Kr. E. CLEMENT et al. 0 2 : β °

Higher order invariants allow to measure a softness of Q 2 and cos3δ the need of longer excitation pass: 3 intermediate states for σ( Q2) and 5 intermediate states for σ(cos3δ)

SUMMARY 1. Model independent analysis of Coulomb Excitation experiment (GOSIA) combined with non energy weighted Sum Rules - powerful tool for quadrupole deformation parameters determination 2.Summation over double, triple or higher products of E2 matrix elements allowed to measure in model independent way expectation values of quadrupole deformation parameters. 3.In the future by more complicated excitation paths degree of softness or stiffness in particular state 4. Nowadays possible mainly for stable nuclei. We got information for more than 20 cases, including transitional nuclei. 5.Tools are ready for RIA of the new generation 6.Nuclear microscope- Tomasz Czosnyka

main authors D. Cline, T. Czosnyka, C.Y.Wu B. Kotlinski, R. W. Ibbotson, J.S NSRL Rochester L. Hasselgren, A. Backlin, C. Fahlander, L.-E. Svensson, A. Kavka TAL Uppsala P. J. Napiorkowski, M. Zielinska, K. Wrzosek- Lipska, K. Hadynska-Klek, J.S. HIL Warsaw D. Diamond, F. Stephens LBL Berkeley C. Baktash, BNL Brookhaven E. Clement GANIL S. G. Rohozinski UW, L. Prochniak UMCS

0.16

Rochester-Warsaw-Uppsala-Berkeley-…

Nuclear Physics A 766 (2006) 25–51 J. Srebrny, T. Czosnyka, Ch. Droste, S.G. Rohozinski, L. Próchniak, K. Zajac, K. Pomorski, D. Cline, C.Y. Wu, A. Bäcklin, L. Hasselgren, R.M. Diamond, D. Habs, H.J. Körner, F.S. Stephens, C. Baktash, R.P. Kostecki B(E2; if ) spectroscopic quadrupole moment

98 Mo Magda Zielińska PhD Thesis, Warsaw University 2005 Nucl. Phys. A712 (2002) 3

± ± 0.03

± ± 0.03

Contribution of various matrix elements to the final result for invariant in 104 Ru the component contribution to the invariant [e 2 b 2 ] total of 4 contributions = all contributions = 0.76(8)

SUMMARY thanks to GOSIA and model independent analysis we got sets of E2 matrix elements for many transitional nuclei thanks to the Sum Rules we experimentally deduced the shapes of many nuclei in their ground and excited states in a model independent way: nuclear microscope (de Broglie wavelength 0.5 fm much smaller than radius of nucleus) stringent test of sophisticated microscopic collective Q + P models, otherwise impossible

V def - the quadrupole deformation potential, the dynamical variables: β, γ - two Bohr shape deformation parameters, Ω - three Euler angles, Q + P microscopic calculations of potential and all the inertial functions, starting from the Nilsson model Nuclear Physics A 766 (2006) 25–51 J. Srebrny, T. Czosnyka, Ch. Droste, S.G. Rohozinski, L. Próchniak, K. Zajac, K. Pomorski, D. Cline, C.Y. Wu, A. Bäcklin, L. Hasselgren, R.M. Diamond, D. Habs, H.J. Körner, F.S. Stephens, C. Baktash, R.P. Kostecki the nuclear spectroscopy - physics of many body quantum system with finite fermions number quantum dots, molecular clusters,......,.....,.....