ICC2004 Madison, Wisconsin The Multi-Pinch Experiment Outline PROTO-SPHERA purpose & aims Theoretical basis & analysis Multi-Pinch: a step towards PROTO-SPHERA.

Slides:



Advertisements
Similar presentations
Electrodes and PROTO-PINCH Presented by A. Mancuso PROTO-SPHERA Workshop - Frascati, 18-19/03/2002 Associazione Euratom-ENEA sulla Fusione.
Advertisements

Associazione Euratom-ENEA sulla Fusione Culham September 2003 Status of the PROTO-SPHERA Proposal Outline of the Talk 1)PROTO-SPHERA purpose.
Associazione Euratom-ENEA sulla Fusione Culham September 2003 RISERVA Verticale.
Associazione Euratom-ENEA sulla Fusione Culham September 2003 RISERVA 11.
November 3-5, 2003Feedback Workshop, Austin NORMAL MODE APPROACH TO MODELING OF FEEDBACK STABILIZATION OF THE RESISTIVE WALL MODE By M.S. Chu(GA), M.S.
ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
Seminario UT FUSIONE Aula Brunelli, Centro Ricerche Frascati 8 Febbraio 2010 Ideal MHD Stability Boundaries of the PROTO-SPHERA Configuration F. Alladio,
Seminario UT FUSIONE Aula FT23, Centro Ricerche Frascati 25 Ottobre 2011 PROTO-SPHERA Experiment: Time scenarios & Power Supplies requirements F. Alladio,
M. Zuin RFX ws 2011 Padova, 7-9/2/2011 Innovative contributions to confinement understanding M. Zuin.
West Lake International Symposium on Plasma Simulation; April, 2012 Influence of magnetic configuration on kinetic damping of the resistive wall.
Risultati della fase 1 di Multipinch Franco Alladio WiP – 14 Luglio 2014.
The Reversed Field Pinch: on the path to fusion energy S.C. Prager September, 2006 FPA Symposium.
European Ph.D. course. - Garching )p.martin Piero Martin Consorzio RFX- Associazione Euratom-ENEA sulla fusione, Padova, Italy Department of Physics,
Physics Analysis for Equilibrium, Stability, and Divertors ARIES Power Plant Studies Charles Kessel, PPPL DOE Peer Review, UCSD August 17, 2000.
Physics of fusion power
Physics of fusion power Lecture 4: Cylindrical concepts.
Physics of fusion power
Physics of fusion power Lecture 8 : The tokamak continued.
Physics of Fusion power Lecture 7: Stellarator / Tokamak.
S.C. Guo 13th IEA/RFP Workshop, October 9-11, 2008, Stockholm 1 Experiments and modeling on active RWM rotation in RFP plasmas S.C. Guo, M. Baruzzo, T.
Conclusions of phase 1 & transition to phase 2 of MultiPinch Franco Alladio Luca Boncagni, Andrea Grosso, Alessandro Lampasi, Giuseppe Maffia, Alessandro.
P EGASUS Toroidal Experiment University of Wisconsin-Madison 15 th International Spherical Torus Workshop Oct 22-24, 2009 Madison, WI USA The P EGASUS.
Results of PROTO-PINCH Testbench for the PROTO-SPHERA experiment F. Alladio, L.A. Grosso, A. Mancuso, S. Mantovani, P. Micozzi, G. Apruzzese, L. Bettinali,
September 26-29, 2005 Knoxville. Tennessee USA Progress and Plan of the PROTO-SPHERA Program Outline of the Talk 1)Introduction to PROTO-SPHERA 2)The PROTO-PINCH.
TITLE RP1.019 : Eliminating islands in high-pressure free- boundary stellarator magnetohydrodynamic equilibrium solutions. S.R.Hudson, D.A.Monticello,
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Perspectives of tearing modes control in RFX-mod Paolo Zanca Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
R. Piovan “RFX-mod: what does...”RFX 2009 Programme Workshop Padova, Jan RFX – mod: what does the present device allow to do? R. Piovan.
PROTO-SPHERA Diagnostics PROTO-SPHERA WORKSHOP Frascati March 18-19, 2002.
12/03/2013, Praga 1 Plasma MHD Activity Observations via Magnetics Diagnostics: Magnetic island Analysis Magnetic island Analysis Frederik Ostyn (UGent)
Physics of fusion power Lecture 10: tokamak – continued.
The efficient sustainment of a stable, high-β spheromak: modeling By Tom Jarboe, To PSI-Center July 29, 2015.
Experimental Study of Magnetic Reconnection and Dynamics of Plasma Flare Arc in MRX Masaaki Yamada August SHINE Meeting at Nova Scotia Center.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
Stabilizing Shells in ARIES C. E. Kessel Princeton Plasma Physics Laboratory ARIES Project Meeting, 5/28-29/2008.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Compact Stellarator Approach to DEMO J.F. Lyon for the US stellarator community FESAC Subcommittee Aug. 7, 2007.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
TITLE Stuart R.Hudson, D.A.Monticello, A.H.Reiman, D.J.Strickler, S.P.Hirshman, L-P. Ku, E.Lazarus, A.Brooks, M.C.Zarnstorff, A.H.Boozer, G-Y. Fu and G.H.Neilson.
The influence of non-resonant perturbation fields: Modelling results and Proposals for TEXTOR experiments S. Günter, V. Igochine, K. Lackner, Q. Yu IPP.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
GOLEM operation based on some results from CASTOR
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
PROTO-SPHERA experiment ISTW2015 | Princeton, 3-6 November
The Joint Meeting of 4th IAEA Technical Meeting on Spherical Tori and 14th International Workshop on Spherical TorusFrascati, 7 to 10 October Ideal.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
APS, 44th Annual Meeting of the Division of Plasma Physics November 11-15, 2002; Orlando, Florida Hard X-ray Diagnostics in the HSX A. E. Abdou, A. F.
Presented by Yuji NAKAMURA at US-Japan JIFT Workshop “Theory-Based Modeling and Integrated Simulation of Burning Plasmas” and 21COE Workshop “Plasma Theory”
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Resistive Modes in CDX-U J. Breslau, W. Park. S. Jardin, R. Kaita – PPPL D. Schnack, S. Kruger – SAIC APS-DPP Annual Meeting Albuquerque, NM October 30,
Power Supplies requirements of the PROTO-SPHERA experiment P. Micozzi 1, F. Alladio, L. Boncagni, F. Causa, E. Giovannozzi, A. Grosso, A. Lampasi, G. Maffia,
Joint Meeting of the 3rd IAEA Technical Meeting on Spherical Tori and the 11th International Workshop on Spherical Torus St. Petersburg, 3 to 6 October.
Reconnection Process in Sawtooth Crash in the Core of Tokamak Plasmas Hyeon K. Park Ulsan National Institute of Science and Technology, Ulsan, Korea National.
Construction and Status of Versatile Experiment Spherical Torus at SNU
2010 Spring Korean Physical Society
Obtainment of the Phase1 full performances in
Obtainment of the Phase1 full performances in
First results of plasma centerpost in PROTO-SPHERA
F. Alladio, A. Mancuso, P. Micozzi, F. Rogier*
PROTO-SPHERA experiment ISTW2015 | Princeton, 3-6 November
UPDATE ON  LIMITS FOR ARIES-CS
Stabilization of m/n=1/1 fishbone by ECRH
Basic Principles for Design of Ignition Systems
Presentation transcript:

ICC2004 Madison, Wisconsin The Multi-Pinch Experiment Outline PROTO-SPHERA purpose & aims Theoretical basis & analysis Multi-Pinch: a step towards PROTO-SPHERA Conclusions Franco Alladio, Alessandro Mancuso, Paolo Micozzi, 1 Stamos Papastergiou and 2 François Rogier CR-ENEA, CP 65, Frascati (Roma), Italy 1 Euratom-Enea, 2 ONERA Toulouse, France 1

ICC2004 Madison, Wisconsin PROTO-SPHERA I e, I p = 40, 50 kA pinch, ST currents I e, I p = 60, 240 kA A = 1.6 aspect ratio A ≤ 1.3  pulse = 80  s~110  A pulse duration  pulse ≥ 70 ms~1  R Goals: sustain the plasma (Helicity Injection SP  ST) for more than  R =  0 a 2 /  (resistive time) and compare  E with START 2 Aims at producing a spherical torus (ST) with a screw pinch (SP) replacing the centerpost 

ICC2004 Madison, Wisconsin PROTO-SPHERA & Spheromaks (TS-3) 3 Two important requirements are different for the PROTO-SPHERA equilibria with respect to Flux-Core-Spheromaks like TS-3: 1)Tokamak-like safety factor profile of ST: q 0 ~0.94, q 95 ~2.6 at the edge 2)Strong jump of the surface averaged relaxation parameter =  0 between SP and ST  Helicity Injection (  ~35 m -1 inside SP,  ~10 m -1 inside ST) PROTO-SPHERA (R sph =0.35 m) has been designed in order to be as far as possible from the pure Spheromak  ST R sph ≤4.49 eigenvalue

ICC2004 Madison, Wisconsin Physics & Engineering Design ST diameter = 0.7 m Toroidal plasma current I p = 240 kA Aspect ratio A = 1.2 Elongation  = 2.35 Pinch current I e = 60 kA Engineering design complete (geometry, stresses and temperatures) 4

ICC2004 Madison, Wisconsin Main Breakdown features Screw pinch (SP) formed by a hot cathode breakdown  Filling pressure p H ~10 -3 ÷10 -2 mbar  Cathode filaments heated to 2600 °C  V e ~100 V applied on the anode  Electrode arc current limited to I e ~8.5 kA 5 Proto-Pinch Testbench (I e ~ 700 A) 

ICC2004 Madison, Wisconsin 6 Theoretical analysis of the PROTO-SPHERA configuration  Ideal MHD Equilibria: formation phase fully analyzed equilibrium resilience checked by varing the functional forms of p(  ) & f(  ) both on the SP and on the ST Ideal MHD Stability: New free boundary code developed  plasmas extending up to the symmetry axis (R=0) with regular (|B|≠0) & singular (|B|=0) X-points Toroidal mode numbers n=0 (axisymmetric), 1, 2, 3 investigated

ICC2004 Madison, Wisconsin 7 All equilibria has been obtained with the same coils set PROTO-SPHERA Equilibria: I p =180 kA, I e = 60 kA, = 0.22

ICC2004 Madison, Wisconsin 8 PROTO-SPHERA Stability Results I ST /I e = 5 and  15% Unstable n=1,2,3 investigated for all equilibria Main constraint I ST /I e Stability obtained for:  = 21÷26%, I ST /I e =  = 14÷15%, I ST /I e = 2-4 With  T0 =2  0 vol / vol  T0 =28÷29%, I ST /I e =  T0 =72÷84%, I ST /I e = 2-4 The dominant instabilities are: up to I ST /I e ≈3 Spherical Torus instabilities I ST /I e > 3 Screw Pinch kink instabilities n=1

ICC2004 Madison, Wisconsin Results for axisymmetric stability (n=0) Instabilities growth rate for free boundary codes (vacuum contribution fully included) Mode numbers n=0, m=[-15,+15] 9 Pinch Magnetic Structure prevents n=0 Vertical ULART Drift PROTO-SPHERA n=0 stable for any scenarios up to R/a = 1.2  < 4 Ulart Magnetic Structure prevents Radial Pinch Drift

ICC2004 Madison, Wisconsin Theoretical work to be done 10  Investigation about the resistive MHD instabilities, in particular at the Screw Pinch / Spherical Torus interface Evaluation of the Helicity Injection efficency both from a macroscopic as well as a microscopic point of view

ICC2004 Madison, Wisconsin Possible evolution of the PROTO-SPHERA proposal 11  PROTO-SPHERA can be viewed as a simplification of the Chandrasekar-Kendall-Furth (CKF) configurations (stable up to  ~ 1) Screw Pinch replaces in part the surrounding discharge Divertor PF coils replace the secondary tori

ICC2004 Madison, Wisconsin 12 - Provisional simplified PF coils system with constant current (partially recoverable for PROTO-SPHERA) - Fed with 0.6 kA, 120 V (no water cooling) (1.9 kA, 350 V in PROTO-SPHERA) Multi-Pinch Experiment  START vacuum vessel (already in Frascati) Aims: Stable Screw Pinch plasma with the full dimension and mushroom shape, but reduced current I e (2.7 Vs. 8.5 kA) Phylosophy: Almost all parts should be reutilized in PROTO-SPHERA

ICC2004 Madison, Wisconsin 13 Multi-Pinch Experiment (first phase) Cathode plasma only is mushroom-shaped Power density on the “single” anode ~ PROTO-SPHERA

ICC2004 Madison, Wisconsin 14 Multi-Pinch Experiment (second phase) Anode & Cathode plasma mushroom-shaped Definitive PROTO-SPHERA Anode Possibility of arc anchoring  needs of saddle coils?

ICC2004 Madison, Wisconsin 15 Definitive PROTO-SPHERA Cathode, but only partially filled Multi-Pinch Cathode

ICC2004 Madison, Wisconsin Multi-Pinch Cathode Multi-Pinch test is proposed with a limited number of cathode coils (18 Vs. 378) Coils will drive a total limited current (2.7 kA vs. 60 kA) inside the pinch, simplifying the power supply for the Multi-Pinch Each coil will be capable of delivering the design current (150 A) Conical terminal & clamp Wire Length = 400 mm 16  Mo support W wires 

ICC2004 Madison, Wisconsin Conclusions PROTO-SPHERA aims to explore the feasibility of a ST formed around a SP, with respect to the possibility to sustain it through Helicity Injection on resistive time scale An exhaustive range of PROTO-SPHERA scenarios has been investigated (resilience of the equilibria Vs. internal profile & ideal MHD stability boundaries) The Multi-Pinch experiment will investigate the feasibility of a stable mushroom-shaped Screw Pinch Multi-Pinch will be built inside the START vacuum vessel, PROTO-SPHERA can be obtained with a modular implementation of this experiment 17