FCH 532 Lecture 14 Quiz Friday on nucleic acid structures, base pairing Extra credit assignment for Friday March 2- Seminar Speaker Matt DeLisa Chapter.

Slides:



Advertisements
Similar presentations
DNA damage and repair summary
Advertisements

Homologous and Site-Specific Replication Chapter 19.
Homologous Recombination at the Molecular Level
Repair mechanisms 1. Reversal of damage 2. Excision repair 3. Mismatch repair 4. Recombination repair 5. Error-prone repair 6. Restriction-modification.
DNA damage, repair and recombination
Most UV lesions are repaired by Nucleotide Excision Repair (NER) Stalled replication forks may be bypassed by alternative (bypass) DNA polymerases (REV1,
Molecular Biology Fourth Edition
The how and why of information flow in living things.
DNA Repair and Recombiantion. Methyl-directed mismatch repair (1) If any mismatch escapes the proof reading mechanisms it will cause distortion of the.
Microbial Genetics. Terminology Genetics Genetics Study of what genes are Study of what genes are how they carry information how they carry information.
The Role of RecA in DNA Replication
Chapter 20 Repair Systems.
Medical Technology Department, Faculty of Science, Islamic University-Gaza MB M ICRO B IOLOGY Dr. Abdelraouf A. Elmanama Ph. D Microbiology 2008 Chapter.
Ch20 and 21 DNA, Synthesis and Repair 阮雪芬NTU April 29, 2003.
Genetic Recombination 3 by: Nouf alyami. Content I. INTRODUCTION. II. GENERAL RECOMBINATION III. SITE-SPECIFIC RECOMBINATION.
Genes: Structure, Replication, & Mutation  Nucleic Acid Structure  DNA Replcation  Mutations  Detection & Isolation of Mutants  DNA Repair.
 MUTAGENESIS  DNA DAMAGE  DNA REPAIR  RECOMBINATION.
Chapter 25 DNA Replication, Repair, and Recombination Chapter 25 DNA Replication, Repair, and Recombination revised 04/15/2014 Biochemistry I Dr. Loren.
Dr Mohammad S Alanazi, MSc, PhD Molecular Biology KSU DNA repair: mechanisms, methods to study DNA repair, syndromes.
Describe the process of DNA replication.
DNA Recombination Mechanisms AHMP Objectives List the major classes of mobile genetic elements (we went over this before) Describe the process of.
DNA Recombination Roles Types Homologous recombination in E.coli
Welcome Each of You to My Molecular Biology Class.
Copyright © 2010 Pearson Education, Inc. Lectures prepared by Christine L. Case Chapter 8 Microbial Genetics.
Biological Roles for Recombination 1.Generating new gene/allele combinations (crossing over during meiosis) 2.Generating new genes (e.g., Immuno- globulin.
DNA Recombination.
Chapter 6 Molecular Biology of DNA Replication and Recombination Jones and Bartlett Publishers © 2005.
DNA Ligase Energy-dependent joining of the chains Activated by NAD + or ATP hydrolysis NAD  NMN + + AMP ATP  AMP + PP i AMP -attaches to lysine group.
Chapter 5 General Recombination.
Objectives of DNA recombination
Ch 8 Microbial Genetics.
Genetic recombination: 1.Homologous Recombination 2. Site-Specific Recombination 3. DNA Transposition.
FQ. DNA Replication and Repair.
DNA Replication Robert F. Waters, Ph.D.. Goals:  What is semi-conservative DNA replication?  What carries out this process and how?  How are errors.
DNA metabolism DNA replication DNA repair DNA recombination.
Molecular Biology Fifth Edition
Chapter 16 Repair Systems Introduction mismatch repair (MMR) – A type of repair that corrects mispaired bases, typically immediately following replication.
Lecture 7 DNA repair Chapter 10 Problems 2, 4, 6, 8, 10, 12, and 14
Homologous Recombination
Enzymes required for recombination Overview Generation of single strands Invasion of single strands Branch migration Resolution.
Mutations.
DNA Replication meets Genetic Exchange… Jacqueline Jonuschies.
DNA Repair DNA repair is a system used to correct DNA damage caused by either: A- Errors during DNA replication including incorrect base-pairing (mismatching.
Chapter 10. DNA Replication  DNA replication requires: Deoxyribonucleoside triphosphates: the four dNTPs (dATP, dGTP, dCTP, dTTP). DNA template RNA primer.
Regulation of Bacterial Gene Expression Constitutive enzymes are expressed at a fixed rate. Other enzymes are expressed only as needed. –Repressible enzymes.
DNA Replication and Recombination
DNA repair Of the thousands of random changes created every day in the DNA of a human cell by heat, metabolic accidents, radiation of various sorts, and.
Copyright © 2010 Pearson Education, Inc. MICROBIAL GENETICS Chapter 8.
DNA REPLICATION C T A A T C G GC A CG A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T.
Recombination – read Chapter 11
Maintenance of genomes Copying the genome sequence (replication) Repairing damage to the genome sequence Rearranging genome sequences.
Homologous Recombination
Presentation Introduction of DNA Recombination Haoran Zhang Department of Chemical and Biological Engineering Tufts University.
DNA R ECOMBINATION M ECHANISMS Fahareen Binta Mosharraf MNS 1.
Chapter 13 DNA Replication
1. 1.Both prokaryotes and eukaryotes have enzyme-based DNA repair systems that prevent mutations and even death from DNA damage. 2.Repair systems are.
DNA damage and repair summary
Variation Mutations DNA repair
Recombination December 6, 2017.
DNA Recombination -- in real life --
Recombination May 2, 2018.
Control of Crossing Over
Chapter 8, part C Microbial Genetics.
The Mechanism of DNA Replication
Homologous Recombination
Zoran Z Zdraveski, Jill A Mello, Martin G Marinus, John M Essigmann 
The Fuss about Mus81  James E Haber, Wolf-Dietrich Heyer  Cell 
Homologous Recombination
The role of microhomology in genomic structural variation
Avanti Kulkarni, David M. Wilson 
Presentation transcript:

FCH 532 Lecture 14 Quiz Friday on nucleic acid structures, base pairing Extra credit assignment for Friday March 2- Seminar Speaker Matt DeLisa Chapter 30

SOS response SOS response causes cells to stop dividing and repair damaged DNA. LexA and RecA mutants always have the SOS response on. When E. coli is exposed to agents that damage DNA, RecA mediates proteolytic cleavage of LexA. This is induced by RecA binding to ssDNA. LexA is a repressor of 43 genes involved in DNA repair (all proceeded by 20 nt sequence called the SOS box).

Figure 30-59Regulation of the SOS response in E. coli. Page 1180

SOS Repair E. coli Pol III is unable to replicate through lesions (AP sites, thymine dimers), causing a replication fork “collapse” To restore the replication fork, can either induce recombination repair which uses a homologous chromosome as the template or SOS repair. Uses 2 bypass DNA polymreases (Pol IV and PolV). These are error-prone DNA polymerases (lack the 3’  5’ exonuclease) SOS is a mutagenic process. This is a last resort if DNA has not been repaired by other mechanisms.

Double-strand break (DSB) repair Double-strand breaks (DSBs) in DNA are produced by ionizing radiation and free radical products of oxidative metabolism. Can also occur as intermediates in meiosis. Unrepaired DSBs can lead to cancer or cell death. 2 modes to repair DSBs 1. Recombination repair 2. Nonhomologous end-joining (NHEJ)

Nonhomologous end-joining (NHEJ) Broken ends are aligned and frayed ends are trimmed or filled in, and their strands ligated. NHEJ in eukaryotes has several proteins: Ku-heterodimer of Ku70 and Ku80 DNA ligase IV Xrcc4 Ku binds to double-stranded breaks binding to DNA’s major and minor grooves. Nucleotide trimming is carried out by ATP-dependent Mre11 complex. Gaps filled in by DNA polymerases and sealed by DNA ligase IV and Xrcc4.

Figure Schemati c diagram of nonhomologous end-joining (NHEJ). Page 1183

Carcinogens Carcinogens-chemical agents that can cause cancer Up to 80% caused by exposure to these agents Usually damage DNA; likely to induce SOS response, so they are indirect mutagenic agents. High correlation between mutagenesis and carcinogenesis. Ames Test-assays for carcinogenicity Salmonella typhimurium his - strain- must be grown in presence of His. Lack lipopolysaccaride coats and are highly permeable to many substances. Inactivated excision repair systems. Look for reversion to his + phenotype.

Figure 30-63The Ames test for mutagenesis. Page 1183

Ames Test ~10 9 cells spread on plate lacking His. Use a mixture of his - strains to detect base changes, insertions and deletions. Mutagen is place in culture medium that causes some his - strains to revert to his + Mutagenicity is scored as # of colonies less the few spontaneously revertant colonies that occur in the absence of the mutagen. Many noncarcinogens are converted to carcinogens in liver. Small amount of rat liver is added to Ames test to mimic mammalian metaboilsm.

Homologous recombination Defined as the exchange of homologous segments between two DNA molecules. Bacteria are haploid and acquire foreign DNA through conjugation in which DNA is directly transferred from one cell to another via a cytoplasmic bridge. Holliday junction - corresponding strands of two aligned homologous DNA duplexes are nicked and the nicked strands cross over to pair with the nearly complementary strands of the homologous duplex after which the nicks are sealed.

Figure The Holliday model of homologous recombination between homologous DNA duplexes. Page 1184

Branch migration-4 strands exchange base pairing partners Formation of Holliday Junction

Resolution of Holliday Junction occurs in 2 ways 2.The cleavage of strands that crossed over exchanges a pair of homologous single-stranded segments. 1.The cleavage of the strands that did not cross over exchanges the ends of the original duplexes to form, after nick sealing, traditional recombinant DNA

Figure 30-65aSecondary structure of the four- stranded Holliday junction of self-complementary decameric DNA d(CCGGTACCGG). Page 1185 Watson-Crick base pairing interactions are shown in black. 2-fold axis relating two helices of stacked-X conformation is represented by large black lenticular symbol.

Page 1185 X-ray structure of the cross over event.

Figure Homolo gous recombination between two circular DNA duplexes. This process can result either in two circles of the original sizes or in a single composite circle. Page 1186

Figure 30-67aElectron micrographs of intermediates in the homologous recombination of two plasmids. (a) A figure-8 structure. This corresponds to Fig d. Page 1186

Figure 30-67bElectron micrographs of intermediates in the homologous recombination of two plasmids. (b) A chi structure that results from the treatment of a figure-8 structure with a restriction endonuclease. Page 1186

Homologous recombination catalyzed by RecA in E. coli recA- E.coli have fold lower recombination rate than wild-type cells. RecA polymerizes cooperatively on ssDNA or dsDNA that has a single- stranded gap. Resulting filaments may contain 1000s of RecA molecules. Bind homologous dsDNA and using ATP catalyze strand exchange.

Figure 30-68An electron microscopy–based image (transparent surface) of an E. coli RecA–dsDNA–ATP filament. Page 1187

Figure 30-69aX-Ray structure of E. coli RecA protein. Monomers yellow and blue, ADPs red. (a) View normal to the helix axis as in Fig Page 1187

Figure 30-69bX-Ray structure of E. coli RecA protein. (b) View nearly parallel to the helix axis showing one turn of the helix. Page 1187

Figure 30-70A model for RecA-mediated pairing and strand exchange between a single-stranded and a duplex DNA. Page ssDNA binds to RecA to form initiation complex. 2.dsDNA binds to the initiation complex to form a transient 3-stranded helix to mediate correct pairing to homologous strand. 3.RecA rotates the bases of the aligned homologousstrands to effect strand exchange in an ATP- driven process.

Figure 30-71The RecA-catalyzed assimilation of a single-stranded circle by a dsDNA can occur only if the dsDNA has a 3¢ end that can base pair with the circle (red strand). Page 1188

Figure 30-72A hypothetical model for the RecA-mediated strand exchange reaction. Page 1189

Recombination repair Damaged replication forks occur at a frequency of at least once per bacterial cell generation and 10 X per eukaryotic cell cycle. DNA lesions that damage replication forks can be repaired through recombination repair. Happens when a replication fork encounters an unrepaired single-strand lesion.

Figure 30-77The recombination repair for a single-strand lesion. Page DNA replication is stopped at the lesion but continues on the opposing undamaged strand before replisome collapses. 2.Replication fork changes to a Holliday junction (Chicken Foot). 3.Single-strand gap at collapsed replication fork now an overhang is filled in by Pol I 4.Reverse branch migration mediated by RuvAB or RecG yields a reconstituted replication fork.

Figure 30-78The recombination repair for a single-strand nick. Page Single stranded nick causes replication fork to collapse. 2.Repair process: RecBCD and RecA invasion of newly synthesized and undamaged 3’-ending strand into homologous dsDNA 3.Branch migration via RuvAB makes Holliday junction to exchange 3’-ending strands. 4.RuvC resolves Hollidayh junction making the 5’ end strand nick becomes a 5’ endo fo Okazaki fragment.

Figure 30-79The repair DSB in DNA by homologous end-joining. Page DSB double-stranded ends are changed to single-stranded ends. The 3’-ending strands pairs invades the homologous chromosme to form a pair of Holliday junctions. 2.DNA synthesis and ligation to fill gaps and seal 3.Both Holliday junctions are resolved.