Contaminants Produced During Processing. Acrylamide What is Acrylamide? synthetic vinyl compound Acrylamide is a synthetic vinyl compound produced by.

Slides:



Advertisements
Similar presentations
The voice of the European food and drink industry Helmut Guenther Coffee and Coffee Substitutes.
Advertisements

Acrylamide in Biscuits & Crispbread Geoff Thompson
Chapter 17 in Green / Damjii
© CommNet 2013 Education Phase 3 Food production and processing.
Water. Importance  Water makes up 55-60% of the human body!  Losing 10% could cause death  Major function for life Digesting food Transporting nutrients.
Additives Used in Large Scale Production. Additives can be; Natural – extractions from plants or animals e.g. beetroot juice or vitamin C synthetic/nature.
Browning Compiled by: Mrs. Vandana Mahajani. What is browning? Browning is a common colour change seen in food during prepreperation, processing or storage.
Basics of Organic Life Biomolecules. Elements  What are they?  Common Elements in Biology N, C, O, H  96% of human body Other 4% = trace elements EX:
Education Phase 4 Food additives. Additives are substances used for a variety of reasons such as preservation, colouring, sweetening, during the preparation.
Food Additives.
Dietary Guideline #7 Decrease Sodium and Increase Potassium.
Ch. 7 Nutrition for Life Section 1 Carbohydrates, Fats, and Proteins
Nutrition for a Healthy Lifestyle. Objectives Upon completion of this session, you will: Understand the components and importance of a healthy diet Learn.
Home is where the heart is…. Nutrition Chapter 7.
Types of Food Preservatives Maintaining freshness.
You are what you eat. What is nutrition The word 'Nutrition" comes from a Latin word which means to 'nourish" or to "to feed". Nutrition covers many areas.
Acrylamide: Mechanism of Formation in Heated Foods
Do You Know What Are The Nutrients Required
Chapter 2 Biomolecules.
IUG, Fall 2012 Dr. Tarek M Zaida
Nutrition A lifelong pursuit.
C1a Topic 6 Making Changes
Food additives. What are they? Any substances or chemicals added to food for specific purposes. The Health Canada definition: A food additive is any chemical.
What Is Nutrition? - Is defined as all body processes relating to food including: digestion, absorption, metabolism, circulation and Elimination -These.
Unit Food Science. Problem Area Handling and Storing Plant Products.
1 FAO/WHO Seminar on Acrylamide in Food, Arusha, 16 March 2003 EU Commission Perspective on Acrylamide in Food Dr Martin Slayne European Commission Directorate.
Formation, Occurrence and Strategies to Address Acrylamide in Food Robert Brown, Ph.D.
Chapter 6 Nutrition Copyright © 2011 by John Wiley & Sons, Inc. All Rights Reserved.
Baseline Analysis of Ground Water Quality Around Open Dumpsites in Lagos, Nigeria: Focus on Polynucelar Aromatic Hydrocarbons. Baseline Analysis of Ground.
U.S. Action Plan for Acrylamide Activities and Progress Terry Troxell, Ph.D.and Lauren Posnick, Sc.D., U.S. FDA March 16, 2003 FAO/WHO Seminar on Acrylamide.
Nutrition Basics 1. Learning Outcomes: List the six major classes of nutrients. Define the following terms: serving size, portion control, recommended.
Nutrition Guidelines. Nutrition Requirements: Types and Sources of Nutrients The nutrients are obtained when the foods we eat are digested into compounds.
NUTRITION: Identifying Nutritious Food Ms. Mai Lawndale High School.
By Erin Schrack Computers 8 NUTRITION.  Provides energy for body  2 major types  Simple (sugar) –digest quickly & easily  Complex (starches) – chain.
Furan: Mechanisms of Formation and Levels in Food
Implications of the Current State of Scientific Knowledge David W K Acheson, M.D. Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration.
Nutrition. Nutrients Substances in foods that provide energy and materials for cell development, growth and repair Energy: –Every body activity needs.
Food & Nutrition part II
CALIFORNIA proposed SAFER CONSUMER PRODUCT REGULATIONS Marjorie MartzEmerson October 24, 2012.
Proposed Gluten Regulations in Argentina Excipient Realities and Global Requirements.
Reclaimed Wastewater Quality Criteria, Standards, and Guidelines
Background on Furan in Foods Nega Beru, Ph.D. Director, Division of Plant Product Safety Office of Plant and Dairy Foods Center for Food and Applied Nutrition.
Nutrition and Healthy Eating Properly Fuelling Your Body.
Dr. Nermin Hassan Ibrahim Ass. Prof. of Medical Microbiology and Immunology.
Food Additives. What is a food additive? In its broadest sense, a food additive is any substance added to food.
Food Science and Industry
ERT 455 MANUFACTURING & PRODUCTION OF BIOLOGICAL PRODUCT 1.
Lesson Enzymatic Browning.
Chemistry Group Project. Salts : Calcium Carbonate Calcium carbonate is an important chemical compound made up of one atom of calcium bonded to one atom.
NUTRITION SCIENCE OF NUTRITION THE STUDY OF NUTRIENTS AND THEIR INGESTION, DIGESTIONS, ABSORPTION, TRANSPORT, METABOLISM, INTERACTION, STORAGE, AND EXCRETION.
Maillard Reaction.
Chapter 8 Guide Nutrition for Health. Lesson 1: The Importance of Nutrition Calories- units of heat that measure the energy used by the body, and the.
Carbohydrates, Fats, and Proteins
Regulators of Body Functions
The voice of the European food and drink industry Acrylamide in Bread Routes for intervention? Gareth Edwards.
Glencoe Health Lesson 2 Nutrients.
© ORCA Education Limited 2005
BAKING REACTIONS IN BREAD MANUFACTURING
Fat and its functional properties in food products.
Nutrition.
PRESENTATION ON “Preservatives”
© ORCA Education Limited 2005
Processing and Vitamins and Minerals
What is food chemistry? The study of the chemicals inside common foods and how they react.
THE DOSE MAKES THE POISON
Food Preservation An Overview of Methodologies
Nutrition This lecture will cover the basics about nutrition. 2.
A cell needs nutrients to grow and live.
There are two different types of nutrients: macronutrients;
Environmental Chemistry
Presentation transcript:

Contaminants Produced During Processing

Acrylamide What is Acrylamide? synthetic vinyl compound Acrylamide is a synthetic vinyl compound produced by the chemical industry mainly as a building block for various polymers, particularly polyacrylamide. Polyacrylamide is widely used in various applications, such as:  in the treatment of wastewater  in paper processing  in mining and mineral production. present in cigarette smoke Acrylamide is also present in cigarette smoke. human exposure to acrylamide is probable The wide use of polyacrylamide in industry means that human exposure to acrylamide is probable.

Occurrence in Foods widely known until 2002 The possibility of acrylamide contamination of foods did not become widely known until 2002, when a report from the Swedish National Food Administration was published. acrylamide could be produced This report revealed that acrylamide could be produced in significant concentrations in certain carbohydrate-rich foods processed at relatively high temperatures, such as:  fried potato (chips)  fried foods  Chocolate  Coffee  baked cereal products such as: o Biscuits o Bread o toasted breakfast cereals

Acrylamide is not confined to commercially processed foods. It can also be found in home-baked food.

Effects on Health numbness in the hands and feet. Acrylamide is a neurotoxin at high levels of exposure and may cause a range of symptoms such as numbness in the hands and feet. genotoxic It has also been shown to be genotoxic in animal studies. carcinogenic Of more concern to the food industry is the finding that acrylamide is also carcinogenic in animal studies. probably carcinogenic to humans The International Agency on Research on Cancer (IARC) classifies it as ‘‘probably carcinogenic to humans (IARC Group 2A).’’

Sources heating certain foods, especially those containing high levels of carbohydrateabove C The original Swedish report into acrylamide in food in 2002 indicated that the contaminant is produced as a result of heating certain foods, especially those containing high levels of carbohydrate, at temperatures above C. It is therefore a contaminant generated during processing. The major mechanism for the formation of acrylamide during cooking is now acknowledged to be: asparagine during the Maillard browning reactions that occur during cooking at high temperatures  the reaction of the free amino acid asparagine with reducing sugars, such as glucose or fructose, during the Maillard browning reactions that occur during cooking at high temperatures. ***Asparagine is a non-essential amino acid.

key factors that affect the quantity of acrylamide The key factors that affect the quantity of acrylamide produced appear to be;  amount of free asparagine present in the food  amount of sugars present in the food  cooking time  cooking temperature.

Stability in Foods acrylamide is relatively stable in food The large amount of data collected from food surveys suggests that acrylamide is relatively stable in food, but this has not been widely studied to date. Nevertheless, acrylamide levels have been found: not to decrease in crisps or baked cereal products during shelf life  not to decrease significantly in crisps or baked cereal products during shelf life  decrease roast and ground coffee  decrease significantly in roast and ground coffee

Control Options 1-Product Formulation minimize the amount of free asparagine and reducing sugars in food prior to cooking One obvious strategy for the control of acrylamide formation is to minimize the amount of free asparagine and reducing sugars in food prior to cooking. low-asparagine varieties of potato The development of low-asparagine varieties of potato is one approach that is receiving attention. modification of product recipes The modification of product recipes also shows some promise. For example, replacing ammonium bicarbonate with other raising agents in baked products can reduce acrylamide formation significantly, as can a reduction in pH.

2-Processing cooking time and temperature The main factors that can be modified to minimize acrylamide formation are cooking time and temperature. The ‘‘thermal input’’ to a cooking process has been shown to be directly linked to the amount of acrylamide produced. higher thermal input results in higher levels As a general rule, higher thermal input results in higher levels, with the exception of coffee production, where acrylamide levels decrease with longer roasting times and ‘‘darker’’ roasts.

compromise between product quality and safety. Reducing acrylamide by changing processing times and temperatures results in a compromise between product quality and safety. frying at lower temperatures may allow foods to take up higher levels of fat Also, frying at lower temperatures may allow foods to take up higher levels of fat, which may be undesirable from a nutritional point of view. While this may be successful, it must be recognized that the browning of baked and fried foods is an essential component in their sensory acceptability.

Legislation is not yet covered specifically by legislation Acrylamide is not yet covered specifically by legislation in Europe or North America and no permitted limits have been set.

Benzene What is Benzene? aromatic hydrocarbon compound Benzene is an aromatic hydrocarbon compound used extensively in the chemical industry as an intermediate in the manufacture of polymers and other products. common atmospheric contaminant It is also a common atmospheric contaminant and is present in motor vehicle exhaust emissions and cigarette smoke. containing a benzoate preservative and ascorbic acid In 1990, it was discovered by the US soft drinks industry that benzene could be produced at low levels in certain soft drinks containing a benzoate preservative and ascorbic acid. carcinogen Since benzene is a known human carcinogen, its presence in food and beverages is clearly undesirable.

Occurrence in Foods Detectable levels of benzene have been found in:  soft drinks  soft drinks that contain either a sodium or potassium benzoate preservative and ascorbic acid  ‘‘diet’’-type products no added sugar  ‘‘diet’’-type products containing no added sugar

Effects on Health carcinogenicity Although benzene can cause acute toxicity, especially when inhaled at high levels, it is its carcinogenicity that is of concern in foods and beverages. carcinogen Benzene is a proven carcinogen and has been shown to cause cancers in industrial workers exposed to high airborne levels. Much less is known about its effects when ingested at low levels over long periods, but current risk assessments suggest that the contribution of soft drinks to benzene exposure levels is negligible, as is any additional risk to human health.

Sources with presence of ascorbic acid and trace amounts of a suitable metal catalyst (copper or iron). It has been established that the source of benzene in soft drinks is the decarboxylation of benzoic acid with presence of ascorbic acid and trace amounts of a suitable metal catalyst (copper or iron). stimulate this reactioninhibited by and by. Elevated temperature and light are both reported to stimulate this reaction, whereas it is inhibited by sugars and by salts of EDTA. benzenediet drinks This may be why benzene is most likely to be found in diet drinks containing low sugar levels.

Stability in Foods little information There is little information available on the stability of benzene in soft drinks during storage.

Control Options reformulate the product The preferred approach for controlling the production of benzene in soft drinks is to reformulate the product. Once a specific soft-drink formulation has been shown to be capable of generating benzene during storage, alternatives to benzoate preservatives, such as potassium sorbate, should be evaluated. removal of benzoates from the product. Benzene generation may be effectively prevented by the removal of benzoates from the product. However, it should be noted that the majority of soft drinks containing benzoates and ascorbic acid have not been shown to produce benzene and may not need to be reformulated in this way.

Legislation Current US and European legislation does not set maximum limits for benzene in soft drinks. drinking water of 5 parts per billion (ppb) However, the FDA has adopted the Environmental Protection Agency (EPA) maximum contaminant level (MCL) for drinking water of 5 parts per billion (ppb) as a quality standard for bottled water. This MCL has been used to evaluate the significance of benzene contamination in the soft drinks tested in recent surveys. benzene in water of 10 ppb The UK Food Standards Agency has used the World Health Organization (WHO) guideline level for benzene in water of 10 ppb as a point of reference for its own survey results.

Chloropropanols What are Chloropropanols? The chloropropanols are a group of related chemical contaminants that may be produced in certain foods during processing. acid-hydrolysed vegetable protein (acid-HVP) They first became a concern to the food industry in the late 1970s when small concentrations were found to be generated during the manufacture of acid-hydrolysed vegetable protein (acid-HVP) used as a savoury ingredient in:  Soups  Sauces  … carcinogenic Chloropropanols are potentially carcinogenic and their presence in food, even at low levels is therefore undesirable.

Occurrence in Foods acid-HVPsoy sauce The highest levels of chloropropanols have been found in acid-HVP and in soy sauce and related products. mechanism is not known It is thought that the contaminant is usually produced during the manufacturing process, especially at high temperatures, but the mechanism is not known in all cases.

Effects on Health acute toxicity at high concentrations Although chloropropanols can cause acute toxicity at high concentrations, it is extremely unlikely that this could occur through consumption of contaminated food, and it is the effect of low doses over a long time that is of most concern from a food safety point of view. carcinogenic Chloropropanols have been shown to be carcinogenic in animal studies and are therefore potential human carcinogens.

Sources acid-HVP reaction between hydrochloric acid (HCl) and lipids. The mechanism for chloropropanol production in acid-HVP is known to be a reaction between hydrochloric acid (HCl) and lipids. more rapidly at the high temperatures The reaction occurs more rapidly at the high temperatures used in processing. In bread and other baked products In bread and other baked products, chloropropanols are thought to be formed by a reaction during the baking process between the chloride in added salt and glycerol from flour and yeast. In other foods, the mechanisms of chloropropanol production are unclear.

Stability in Foods non-volatile and may be quite persistent in foods once formed. Chloropropanols are relatively non-volatile and may be quite persistent in foods once formed.

Control Options The control of chloropropanols in foods focuses on limiting their production during processing. This has been achieved by a number of changes to the manufacturing process.  replacing acid hydrolysis with an enzymatic process  reducing lipid concentrations in the raw materials  effective control of the acid hydrolysis process  use of an over-neutralisation treatment with NaOH to remove chlorohydrins after acid hydrolysis.

Furan What is Furan? volatile heterocyclic organic chemical Furan is a volatile heterocyclic organic chemical often found as an intermediate in industrial processes for producing synthetic polymer materials. It is a very different compoud from the diverse group of chemicals sometimes referred to collectively as ‘‘furans’’, which includes various antimicrobials (nitrofurans) and dioxin-like toxins. Concern over furan in foods dates back only to 2004 survey of heat- processed foods in the USA low levels of furan could be found in an unexpectedly large proportion of products processed in Concern over furan in foods dates back only to 2004, when a Food and Drug Administration (FDA) survey of heat- processed foods in the USA revealed that low levels of furan could be found in an unexpectedly large proportion of products processed in closed containers, such as cans and jars. carcinogen Furan is a possible human carcinogen, and therefore, even low levels in foods are undesirable.

Occurrence in Foods Detectable levels of furan have now been found in:  Coffee  Canned fruits  Juices  Canned vegetables  Ready-to-use gravies  Breakfast cereals  Canned beans  Soups  Sauces  …

Effects on Health cytotoxic and the liver is the target organ Furan is cytotoxic and the liver is the target organ for acute toxic effects. possible carcinogenic potential However, it is the effect of prolonged dietary exposure to furan and its possible carcinogenic potential that is of concern for food safety. possibly carcinogenic to humans For this reason, it has been classified by the International Agency for Research on Cancer (IARC) as ‘‘possibly carcinogenic to humans.’’

Sources uran is a by-product of the high temperatures involved in the heat processing of foods It is thought probable that furan is a by-product of the high temperatures involved in the heat processing of foods, but the means by which it is produced is not known. Proposed sources of furan formation include: reducing sugars amino acids  Thermal degradation of reducing sugars alone, or in combination with amino acids amino acids  Thermal degradation of some amino acids ascorbic acidpoly unsaturated fatty acids carotenoids  Thermal oxidation of ascorbic acid, poly unsaturated fatty acids and carotenoids volatile compound being trapped in the container The presence of furan residues in canned foods is probably a consequence of the volatile compound being trapped in the container.

Stability in Foods it is a highly volatile compound and is likely to be driven off quite quickly if foods are : There is little data as yet on the stability of furan in food, although it is a highly volatile compound and is likely to be driven off quite quickly if foods are : “Cooked or reheated in open vessels”

Legislation no legislation limiting levels of furan As yet there is no legislation limiting levels of furan in foods. Any future regulation will be based on the results of ongoing risk-analysis activities.

Reference: Lawley R., Curtis L. and Davis J. The food safety hazard guidebook. RSC Publishing.